亚洲午夜一区二区福利-中文字幕在线一区二区在线播放-欧美一区二区三区婷婷-亚洲无吗视频在线播放

技術文章/ Article

您的位置:首頁  /  技術文章  /  一種蛋白酶的自述

一種蛋白酶的自述

更新時間:2021-04-01      瀏覽次數:2785

The CBL-Interacting Protein Kinase NtCIPK23 Positively
Regulates Seed Germination and Early Seedling Development
in Tobacco (Nicotiana tabacum L.)
Sujuan Shi
1,2,3,†
, Lulu An
1,2,† , Jingjing Mao 1,2
, Oluwaseun Olayemi Aluko
1,2 , Zia Ullah 1,2 ,
Fangzheng Xu
1,2 , Guanshan Liu 1 , Haobao Liu 1, * and Qian Wang 1, *

 

Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;

2
Graduate School of Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
3
Technology Center, Shanghai Tobacco Co., Ltd., Beijing 101121, China
† These authors contributed equally to this work.

 

Abstract: CBL-interacting protein kinase (CIPK) family is a unique group of serine/threonine protein
kinase family identified in plants. Among this family, AtCIPK23 and its homologs in some plants are
taken as a notable group for their importance in ions transport and stress responses. However, there
are limited reports on their roles in seedling growth and development, especially in Solanaceae plants.
In this study, NtCIPK23, a homolog of AtCIPK23 was cloned from Nicotiana tabacum. Expression
analysis showed that NtCIPK23 is mainly expressed in the radicle, hypocotyl, and cotyledons of
young tobacco seedlings. The transcriptional level of NtCIPK23 changes rapidly and spatiotemporally
during seed germination and early seedling growth. To study the biological function of NtCIPK23
at these stages, the overexpressing and CRISPR/Cas9-mediated knock-out (ntcipk23) tobacco lines
were generated. Phenotype analysis indicated that knock-out of NtCIPK23 significantly delays seed
germination and the appearance of green cotyledon of young tobacco seedling. Overexpression
of NtCIPK23 promotes cotyledon expansion and hypocotyl elongation of young tobacco seedlings.
The expression of NtCIPK23 in hypocotyl is strongly upregulated by darkness and inhibited under
light, suggesting that a regulatory mechanism of light might underlie. Consistently, a more obvious
difference in hypocotyl length among different tobacco materials was observed in the dark, compared
to that under the light, indicating that the upregulation of NtCIPK23 contributes greatly to the
hypocotyl elongation. Taken together, NtCIPK23 not only enhances tobacco seed germination, but
also accelerate early seedling growth by promoting cotyledon greening rate, cotyledon expansion
and hypocotyl elongation of young tobacco seedlings.

 

1. Introduction
Calcium (Ca 2+ ) is a ubiquitous second messenger in the plant. When plants are stim-
ulated by environmental and developmental changes, the concentrations of intracellular
Ca 2+ changes spatially and temporally, and form diverse calcium signals that are sensed
and decoded by different calcium sensors [ 1 ]. Among the sensors, the Calcineurin B-like
protein (CBL) family plays an important role in plant responses to stimuli [ 2 , 3 ]. CBLs
always interact with CBL-interacting protein kinase (CIPK) family to form a complicated
but flexible CBL-CIPK network [ 3 , 4 ]. The latter participates in the regulation of plant
responses to biotic and abiotic stresses, through the phosphorylation of downstream target

proteins, thus subsequently influencing their activities [ 5 ]. CIPK family is a plant-specific
class of serine/threonine protein kinase family, which was also classified as Group 3 of the
sucrose non-fermenting 1-related kinases (SnRK3) [ 6 ]. The CIPK family is the key factor
linking the upstream Ca 2+ signals to downstream targets in plant stress response signaling
pathways [ 2 ]. Generally, CIPKs are structurally conserved, possessing an N-terminal ki-
nase catalytic domain, and a C-terminal regulatory domain harboring a NAF/FISL motif
and a phosphatase interaction motif. CIPKs interact with the CBLs via their NAF/FISL
module [7].
Many CIPK family members from different plant species, including Arabidopsis [ 5 ],
rice [ 8 ], maize [ 9 ], wheat [ 10 ], and soybean [ 11 ] were isolated and some are deeply eluci-
dated. Among these members, AtCIPK23 and its homologs (here we refer to them simply as
CIPK23s) are more notable, due to their roles in the regulation of plant responses to abiotic
and biotic stresses. Generally, the functions of CIPK23s in these processes are established by
its regulation in ion transport. In A. thaliana, two pathways involved in potassium signaling
cascade; AtCBL1/9-AtCIPK23-Arabidopsis K + Transporter 1 (AKT1) and AtCBL1-AtCIPK23-
High-Affinity K + Transporter 5 (AtHAK5) pathway, were identified to positively regulate
K + acquisition under low K + condition [ 12 – 15 ]. Similarly, the OsCBL1-OsCIPK23-OsAKT1
and VvCBL1-VvCIPK4-K + Channel (VvK1.2) pathways were also characterized in rice
(Oryza sativa) [ 16 ] and grape (Vitis vinifera) [ 17 ], respectively. Under high external nitrate
(NO 3 − ) concentration, the AtCBL1/9-AtCIPK23-Nitrate Transporter 1.1 (AtNRT1.1/CHL1)
pathway and the AtCBL9-AtCIPK23-Nitrate Transporter 2.1 (AtNRT2.1) pathway were
reported to inhibit NO 3 - transport [ 18 , 19 ]. Under low external nitrate conditions, the
AtCBL1/9-AtCIPK23-AtCHL1 pathway positively regulates NO 3 - transport [ 18 ]. When
the Arabidopsis roots were exposed to high ammonium (NH 4 + ) conditions, AtCIPK23 leads
to the allosteric inactivation of high affinity Ammonium Transporter 1 (AMT1) through
phosphorylation, and subsequently inhibits NH 4 + transport, thus protecting the plants
from NH 4 + toxicity [ 20 ]. In our recent work, AtCIPK23 is strongly upregulated in leaves
and roots, significantly alleviates NH 4 + toxicity triggered by high NH 4 + /K + ratio, and
reduces the leaf chlorosis and root growth inhibition by regulating the contents of NH 4 +
and K + in these tissues [ 21 ]. Under excessive magnesium (Mg 2+ ) stress, AtCBL2/3 interact
with AtCIPK3/9/23/26, to sequester Mg 2+ into the vacuole and protect plants from Mg 2+
toxicity [ 22 ]. AtCIPK23 also regulates the stomatal closure by controlling anion and K +
efflux under drought stress by forming AtCBL1/9-AtCIPK23 complex to activate Slow An-
ion Channel Associated 1 (SLAC1) and Slow Anion Channel 1 Homolog 3 (SLAH3) [ 23 , 24 ].
Recently, the CIPK23 protein was also identified to participate in biotic stress responses.
In cassava (Manihot esculenta), MeCBL1/9-MeCIPK23 positively regulates plant defense
response to Xanthomonas axonopodis pv. Manihotis [ 25 ]. OsCIPK23 was found to be mainly
expressed in pistil and anther, and is up-regulated during pollination. Additionally, the
pollen grains of OsCIPK23-RNAi lines were irregularly shaped or pear-shaped and con-
tained a large empty central vacuole without any starch granules, resulting in sterility and
reduced seed set [ 26 ]. Through a sensitivity analysis of atcipk23 seeds to ABA, AtCIPK23
was found to function in seed dormancy and germination of A. thaliana [ 27 ], indicating that
ABA signaling might be enhanced in AtCIPK23 loss-of-function materials. A recent study
indicated that, AtCIPK23 regulates blue light-dependent stomatal opening in A. thaliana
through activation of K + in channels [28].
Although the functions of CIPK23s were extensively investigated in A. thaliana and
some other plants. However, there are very few reports about their roles in plant growth
and development, especially in Solanaceae plants, most of which are economically important.
Tobacco is an ideal model plant in the gene functional research of solanaceous plants. In
this study, NtCIPK23, a homolog of AtCIPK23, was cloned from Nicotiana tabacum L. cv.
Zhongyan 100 (ZY100), and its tissue expression analysis during the seedling emergence
was initially analyzed in detail. To identify its biological function, tobacco materials with
differentexpressionlevelsofNtCIPK23wereobtainedandcomparativephenotypicanalysis
during the early seedling growth and development was then performed. The results might provide new clues to unveil the biological functions of CIPK23s in solanaceous plants and be of considerable importance for crop production.

 

2. Results
2.1. Sequence Analysis and the Subcellular Localization of NtCIPK23
Based on the bioinformatic analysis, the homolog of AtCIPK23 (GenBank No. XM_0165
94430.1) was cloned directly from N. tabacum L. cv. ZY100 and was designated as NtCIPK23.
NtCIPK23 shares 83.56% amino acid sequence similarity with AtCIPK23. Similar to other
CIPK proteins, the NtCIPK23 protein harbors the conserved activation loop and NAF motif
that is necessary to bind CBL proteins (Figure 1a) [ 5 ]. Phylogenetic analysis indicated that
CIPK23 gene is conserved during species evolution, and NtCIPK23 is on the same branch
with AtCIPK23 and other CIPK23s, in the phylogenetic tree (Figure 1b).

Figure 1. Sequence analysis and subcellular localization of NtCIPK23. ( a ) Amino acid alignment of NtCIPK23 with
AtCIPK23. Identical and similar amino acids are shaded black and grey, respectively. The kinase activation loop and the
NAF motif, which is named by the conserved amino acids Asn (N), Ala (A), and Phe (F) and is critical for the CBL-CIPK
interaction, are also displayed. ( b ) Phylogenetic analysis of NtCIPK23 and CIPKs in Arabidopsis, rice, and other plants. At
and Os represent A. thaliana and O. sativa, respectively. ( c ) Subcellular localization of NtCIPK23 in the epidermal cells of
N. benthamiana leaves. The red arrows refer to PM. PM marker (pm-rk CD3-1007 plasmid) is A. thaliana fatty acid desaturase
8 (AtFAD8) fused with red fluorescent protein mCherry. AtFAD8 is located in plasma membrane and chloroplast envelope.
Scale bar is 25 µm.

 

In plants, subcellular localization analysis of a protein can provide useful clues for its
functional identification. It was found that, AtCIPK23 and OsCIPK23 are located at the
plasma membrane (PM) and play a key role in ion transport, mainly by phosphorylating
some PM-located channels and transporters [ 15 , 16 ]. To identify the subcellular localization
of NtCIPK23, a plasmid expressing NtCIPK23 fused with green fluorescent protein (GFP) at
its C terminus (NtCIPK23-GFP) was constructed and introduced into the epidermal cells of
N. benthamiana leaves. Confocal fluorescence microscopy analysis indicated that the strongGFP signal of NtCIPK23-GFP was detected mainly at the PM of the epidermal cells, which coincided with the PM marker pm-rk CD3-1007 plasmid fused with red fluorescent protein mCherry [ 29 ] ( Figure 1c). While a fraction of GFP signal was also detected in the cytoplasm and nucleus. As a negative control, a diffuse pattern of fluorescence that was both nuclear
and cytoplasmic was observed in the cells expressing free GFP (data not shown). The results
indicated that NtCIPK23 is mainly located on the PM ( Figure 1c) . It might act as other
CIPK23s and mainly function at the PM to phosphorylate some PM-located targets [30].

 

2.2. Expression Pattern of NtCIPK23 during Seed Germination and Early Seedling Growth
As bioinformatic analysis of the native promoter always provides new starting points
for the functional characterization of a gene, here, a 2004 bp promoter segment upstream
of the start codon of NtCIPK23 was obtained from ZY100, based on the information
provided by the NCBI Database  The cis-acting
elements of NtCIPK23 promoter were then predicted by the online software PlantCARE
 . Besides the eukaryotic
transcriptional regulatory elements (TATA-box and CAAT-box), there are other kinds of
cis-acting elements distributed in the promoter, including light response elements, hormone
response elements, anaerobic response elements, and stress defense-related components
(Table S1). The number and relative positions of these cis-acting elements are shown in
Figure 2a. The analysis indicated that the transcription of NtCIPK23 might be regulated by
various environmental signals, such as light, hormone, and some stresses, which hinted that
NtCIPK23 might contribute to the growth and developmental processes in tobacco plants.

Figure 2. Expression pattern analysis of NtCIPK23. ( a ) The schematic distribution of cis-acting elements of NtCIPK23
promoter. The cis-acting elements were predicted by the online software PlantCARE . Different colors and shapes represent different cis-acting elements. The characters in the graph
indicate the number of predicted elements. “+” and “-” represent the sense and antisense strand, respectively. ( b ) The
GUS staining result at different growth stages of ProNtCIPK23::GUS transgenic plants. The stages include micropylar
endosperm rupture and radicle emergence at 3 DAS (I), radicle elongation (II) and hypocotyl elongation during 3~3.5 DAS
(III), cotyledon emergence at 3.5~5 DAS (IV), cotyledon expansion during 5~6 DAS (V), cotyledon maturation during
6~8 DAS (VI), emergence of the first two leaves at 10 DAS (VII), and expansion of the first two leaves at 14 DAS (VIII). The
experiment was performed using three independent repeats (n ≥ 9 plants). Scale bar is 0.5 cm

A GUS staining assay was then conducted to study the tissue expression of NtCIPK23
during seedling germination and early developmental stages, using the ProNtCIPK23::GUS
transgenic lines. Evident GUS activity was detected in the radicle and hypocotyl when
the testa was ruptured and the radicle was exposed (Figure 2b(I,II)). During the process
of hypocotyl elongation and cotyledon emergence, a slight decrease of GUS activity was
observed in the hypocotyl and nascent cotyledons, while no obvious activity was detected
in the radicle tissue (Figure 2b(III,IV)). At the expansion stage of cotyledons, strong GUS
activity was detected in the hypocotyl and two cotyledons (Figure 2b(V)), and when the
cotyledons are fully expanded, GUS activity in the hypocotyl and cotyledons was at its
peak (Figure 2b(VI)). After emergence of two leaves, the GUS activity in the hypocotyl and
cotyledons declined rapidly to a much lower level, and no obvious activity was detected
at the two young leaves (Figure 2b(VII)). Interestingly, it was observed that, during the
growth of the two leaves, strong GUS activity in two cotyledons was recovered to a higher
level (Figure 2b(VIII). GUS staining assay indicated that a series of spatiotemporal changes
of NtCIPK23 occur between the seed germination and early seedling developmental stages,
suggesting that NtCIPK23 transcription might be controlled under a sophisticated regula-
tory network.

 

2.3. NtCIPK23 Plays a Positive Role in Seed Germination and Post-Germination Seedling Growth
under Normal Conditions
Evident GUS activity in the radicle and hypocotyl during germination and early
seedling growth stages implied that NtCIPK23 might function in this process. To clarify its
role, the overexpressing and loss-of-function mutant lines of NtCIPK23 were generated,
respectively. Two overexpressing lines (OE15 and OE25, Figure 3a) and one typical mutant
line, ntcipk23, were selected for the subsequent phenotype analysis. The ntcipk23 mutant
line was obtained by the CRISPR-Cas9 technique (Figure S1), and the C deletion at position
67 of NtCIPK23 CDS results in a frameshift at the 5 0 -terminal region of its transcripts and
leads to a subsequent translation termination (Figure 3b, Figure S2).
Germination rate and green cotyledon percentage of these materials under normal
growth conditions were evaluated. Generally, the radicles of ZY100 seedlings normally
break through seed coat within 3 DAS, and the cotyledons then emerge and turn green
2~4 days later. The seeds of overexpressing lines germinated more rapidly and the
radicles elongated at a higher rate, compared to the wild type ZY100, while ntcipk23
seeds germinated more slowly and the radicles elongated at a lower rate, although they
all germinated eventually (Figure 3c,d). Green cotyledon percentage of these materials
was then evaluated for post-germination seedling growth. No obvious difference was
observed in the time taken for the cotyledon to emerge and the percentage of both ZY100
and overexpressing lines (Figure 3e), which might be triggered by the relative higher
expression level in the hypocotyl in wild type plants. At 8 DAS, all seeds of the four
plant materials germinated well. The result demonstrated that NtCIPK23 plays a positive
role in the process of seed germination and post-germination seedling growth, under
normal growth conditions, and knock-out of the gene might affect seed vigor but not the
ability to germinate (Figure 3f).

 Tobacco Seedlings
Strong GUS activity was observed in the nascent cotyledons, so the cotyledon
growth of different tobacco materials was observed. It was found that, compared to
ZY100, the overexpressing lines possessed larger cotyledons, while those of ntcipk23 were
smaller (Figure 4a). When the cotyledons were fully expanded and the leaves emerged,
the cotyledon area of each material was measured. The cotyledon area of
NtCIPK23-overexpressing lines was significantly larger than that of ZY100, while the area

2.4. Overexpression of NtCIPK23 Promotes the Cotyledon Expansion of Young Tobacco Seedlings
Strong GUS activity was observed in the nascent cotyledons, so the cotyledon growth
of different tobacco materials was observed. It was found that, compared to ZY100, the
overexpressing lines possessed larger cotyledons, while those of ntcipk23 were smaller
(Figure 4a). When the cotyledons were fully expanded and the leaves emerged, the cotyle-
don area of each material was measured. The cotyledon area of NtCIPK23-overexpressing
lines was significantly larger than that of ZY100, while the area of ntcipk23 was indicatedto be slightly smaller (Figure 4b,c). The data indicated that overexpression of NtCIPK23
promotes the cotyledon expansion of tobacco seedlings

Figure 4. The phenotyping and data analysis of the cotyledon area of different tobacco materials. ( a ) Tobacco plants with
different cotyledon size at 8 DAS. Scale bar is 0.5 cm. ( b ) Cotyledons of different tobacco materials. Scale bar is 0.5 cm.
( c ) The analysis of cotyledon area of different tobacco materials. Different lowercase letters (a and b) indicate significant
differences at p < 0.05 according to the LSD test. The data are shown as the mean ± SE. n = 24, independent samples
collected from three experiments.

2.5. NtCIPK23 Positively Regulates the Hypocotyl Elongation of Young Tobacco Seedlings
Strong GUS activity was observed in the tobacco hypocotyl during seed germina-
tion, so the hypocotyl length of different tobacco materials was quantified. It was found
that, under constant light, the hypocotyl length of these two overexpressing lines was the
longest, followed by the wild type ZY100, and the nicipk23 mutant possessed the shortest
hypocotyl, indicating the promotive function of NtCIPK23 in hypocotyl elongation (Fig-
ure 5a,b). As the crucial function of light in hypocotyl elongation and the distribution of
some light-responsive cis-acting elements was predicted in the NtCIPK23 promoter, we
investigated the influence of light on NtCIPK23′s expression by GUS staining (Figure S3)
and qRT-PCR (Figure 5c). It was shown that the expression of NtCIPK23 in hypocotyl in
the dark treatment was at a higher level, which was about ten times more than that undand upregulated in the dark. To further analyze the role of NtCIPK23 in hypocotyls, a
germination experiment under dark conditions was performed. It was found that a more
evident difference of hypocotyl length between ntcipk23 and ZY100 was observed than that
under the light, which means the upregulation of NtCIPK23 triggered in the dark promotes
the hypocotyl elongation (Figure 5d,e). Consistently, the hypocotyl length of NtCIPK23-
overexpressing lines was also significantly longer than that of ZY100 (Figure 5d,e) . Taken
together, NtCIPK23 works as a positive regulator in the process of hypocotyl elongation

Figure 5. The phenotype and data analysis of hypocotyl in tobacco materials with different NtCIPK23 expression levels.
( a,b ) Hypocotyl phenotype of different tobacco materials under light. ( c ) Expression of NtCIPK23 in the hypocotyl of wild
type ZY100 seedlings under the light and dark conditions. The relative transcript levels were normalized to the abundance
of reference gene NtL25. ( d,e ) Hypocotyl phenotype of different tobacco materials in the dark. The plants under dark
(wrapped by aluminum foil) were taken out at 6 DAS. Different lowercase letters ( a – c ) indicate significant differences at
p < 0.05 according to the LSD test. The data are shown as the mean ± SE. n ≥ 20 plants, independent samples collected
from three experiments. Scale bar is 1.0 

Discussion
To date, CIPK23 was found to act as a major regulator driving root responses to di-
verse environmental stimuli, including drought, salinity, and nutrient imbalances [31–
33]. However, only a few investigations were conducted to characterize their roles in
plant normal growth and development. Moreover, there are few reports about CIPK23
genes in Solanaceae. In this study, a solanaceous CIPK23, NtCIPK23, was cloned from N.
tabacum and its function in tobacco growth and development was first characterized.
Through the analysis of expression pattern and phenotyping of tobacco lines with dif-
ferent NtCIPK23 expression levels, NtCIPK23 was found to enhance seed germination
and early seedling development in tobacco.
For most dicotyledonous plants, cotyledon is the main storage organ that provides
nutrients for seed germination and early seedling growth, and it is also the first organ
for photosynthesis after germination [34]. Therefore, cotyledon plays a critical role in the
early stage of seed germination and seedling growth. Here, it was found that the expres-
sion level of NtCIPK23 was dramatically enhanced during cotyledon greening and
reached a peak when the cotyledons were fully expanded (Figure 2b(Ⅴ,Ⅵ)). Consistent-
ly, seed germination rate and cotyledon greening rate, as well as the cotyledon size,
were all shown to be related to the relative expression level of NtCIPK23 (Figures 3 and
4). The results hinted that NtCIPK23 might function as an activator to facilitate nutrient
Figure 5. The phenotype and data analysis of hypocotyl in tobacco materials with different NtCIPK23 expression levels.
( a,b ) Hypocotyl phenotype of different tobacco materials under light. ( c ) Expression of NtCIPK23 in the hypocotyl of wild
type ZY100 seedlings under the light and dark conditions. The relative transcript levels were normalized to the abundance
of reference gene NtL25. ( d,e ) Hypocotyl phenotype of different tobacco materials in the dark. The plants under dark
(wrapped by aluminum foil) were taken out at 6 DAS. Different lowercase letters ( a – c ) indicate significant differences at
p < 0.05 according to the LSD test. The data are shown as the mean ± SE. n ≥ 20 plants, independent samples collected
from three experiments. Scale bar is 1.0 cm.

3. Discussion
To date, CIPK23 was found to act as a major regulator driving root responses to
diverse environmental stimuli, including drought, salinity, and nutrient imbalances [ 31 – 33 ].
However, only a few investigations were conducted to characterize their roles in plant
normal growth and development. Moreover, there are few reports about CIPK23 genes in
Solanaceae. In this study, a solanaceous CIPK23, NtCIPK23, was cloned from N. tabacum
and its function in tobacco growth and development was first characterized. Through the
analysis of expression pattern and phenotyping of tobacco lines with different NtCIPK23
expression levels, NtCIPK23 was found to enhance seed germination and early seedling
development in tobacco.
For most dicotyledonous plants, cotyledon is the main storage organ that provides
nutrients for seed germination and early seedling growth, and it is also the first organ
for photosynthesis after germination [ 34 ]. Therefore, cotyledon plays a critical role in
the early stage of seed germination and seedling growth. 

 

expression level of NtCIPK23 was dramatically enhanced during cotyledon greening and
reached a peak when the cotyledons were fully expanded (Figure 2b(V,VI)). Consistently,
seed germination rate and cotyledon greening rate, as well as the cotyledon size, were all
shown to be related to the relative expression level of NtCIPK23 (Figures 3 and 4). The
results hinted that NtCIPK23 might function as an activator to facilitate nutrient conversion,
chloroplast development or photosynthesis establishment, and thus positively promote
seed germination, cotyledon extension, and greening.
NtCIPK23 was abundantly expressed in hypocotyl, and its expression level was
greatly upregulated in dark treatment (Figures 2 and 5c, Figure S3). Obvious inhibition
of hypocotyl elongation in the ntcipk23 mutant was observed (Figure 5a). Hypocotyl is
the structure connecting root, shoot tip, and leaves in young seedlings. Its elongation is
a critical growth stage for the epigaeous seedlings, to geminate in the dark in soil and
reach for light [ 34 ]. Emergence capacity and emergence time of a seedling are strongly
influenced by its hypocotyl length and the elongation speed [ 35 ]. Based on the knowledge
of AtCIPK23 in ion uptake or transport [ 14 , 15 , 20 , 21 ], NtCIPK23 might promote hypocotyl
elongation and seedling emergence by interfering in cell turgor and cell elongation by
regulating ion absorption or transport.
Thus far, a wide variety of nutrient transporters were characterized to be the regulatory
targets of AtCIPK23, including AKT1, AtHAK5, AtKUP4, AtNRT1.1, AMT1.1, SLAC1,
SLAH3, etc. [ 31 , 36 ]. Through interfering their activity, the kinase regulates plant response
to the absorption or transport of various ions. Its regulatory mechanisms under different
conditions vary, by activation or inactivation, in a Ca 2+ -dependent or -independent manner,
interacting with CBLs or not [ 31 ]. All these factors contribute to the specification of
AtCIPK23 0 s role. Which nutrient transporters might be the targets of NtCIPK23 in tobacco?
Which CBLs are its interacting partners? Are there any diverse functions in tobacco plants?
These questions are far from being answered, and are needed in the future.
AtCIPK23 was found to be highly expressed in cotyledon, leaves, and radicle in Ara-
bidopsis seedlings, but not in hypocotyl [ 15 ], which is different from NtCIPK23. Phenotypic
analysis of atcipk23 also showed that the absence of AtCIPK23 does not significantly af-
fect the hypocotyl elongation and seed germination of A. thaliana [ 15 , 20 ]. All these data
hint that AtCIPK23 might be dispensable during hypocotyl elongation or seedling emer-
gence. Although AtCIPK23 and NtCIPK23 are homologous genes with similar nucleotide
sequences, due to the different expressional level in hypocotyl, the two genes play different
roles in hypocotyl elongation. Therefore, during the functional characterization of homol-
ogous genes, enough attention should be paid to the specific intracellular environments,
including the expression pattern (species, tissue, organ, cell-type, treatment), upstream or
downstream pathways, interactive targets, etc. [ 37 ]. On the basis of these differences, genes
with high homology might have different functions. The knowledge is very useful in the
functional study of an individual gene member from its multigene family, especially when
there is functional redundancy. Meanwhile, it was also clearly shown that conclusions
from model plants, such as A. thaliana, could not represent all conditions in plants, and
different species have their own characteristics.
Different kinds of phytohormone response, anaerobic response, photoreactive, and
stress defense-related elements were found in NtCIPK23 promoter, which strongly suggests
that NtCIPK23 might be regulated by numerous environmental or cellular factors. Consis-
tently with the prediction, GUS staining assay demonstrated that during the short stage of
early seedling growth, obvious expressional changes of NtCIPK23 occurred spatiotempo-
rally. It hinted that NtCIPK23 is probably regulated by a vastly complicated network, in
which the light, phytohormone, and other kinds of factors are involved. The following RT-
qPCR detection also confirmed this prediction, which indicated the regulatory role of light
and dark in NtCIPK23 expression (Figure 5c). As other CIPK23 genes are proved to occupy
a crucial position in nutrition, development, and stress tolerance in plants [ 3 , 4 , 22 , 38 ], the
upstream regulation pathway of NtCIPK23 might be an interesting point to be focused on.

It is worth mentioning that hypocotyl elongation is an important process for the
epigaeous seedlings. It ensures that the cotyledons are unearthed and reach for light in
time [ 39 , 40 ]. All factors involved in this fundamental growth period can directly affect
seedling emergence and uniformity. Currently, the latter is given more attention in intensive
planting and standardized management [ 41 ]. Contributions of NtCIPK23 to hypocotyl
elongation in this study suggested that the gene is of potential agronomic significance in
the improvement of seedling emergence and uniformity, and it is quite necessary to deepen
the knowledge of NtCIPK23 in seed germination and early seedling growth.
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
N. tabacum L. cv. Zhongyan100 (we refer to it simply as ZY100) and other ZY100
materials with different NtCIPK23 expression levels were used in this study. During
germination and GUS histochemical assay, tobacco seeds were sown on two pieces of filter
paper saturated with water, in a culture dish, with vermiculite underlying the filter paper.
For the measurement of hypocotyl length and the cotyledon size of tobacco plants, seeds
were sown on perforated 96-well PCR plates, which were filled with vermiculite, and
saturated with water. Seeds in different treatments were c*ted under constant light at
25
? C
± 1
? C, 60
± 5% relative humidity. For the dark treatment, the seeds were sown on
perforated 96-well PCR plates with vermiculite, saturated with water, and put into boxes
wrapped by aluminum foil.
4.2. Gene Cloning and Plasmid Construction
Based on the BLAST analysis, one sequence of AtCIPK23 0 s homolog (GenBank No.
XM_016594430.1) in N. tabacum was obtained from NCBI website 
nih.gov/Blast.cgi), using AtCIPK23 sequence (At1G30270) as the template. NtCIPK23
sequence was mapped on Ntab-TN90_scaffold36089 in tobacco genome database  The segments of NtCIPK23 CDS and its promoter were
then cloned from ZY100, based on the design of corresponding primer pairs NtCIPK23-
1F/NtCIPK23-1R and NtCIPK23pro-1F/NtCIPK23pro-1R. The CDS segment was used for
generation of overexpression lines. PCR products of NtCIPK23 and its promoter were lig-
ated to pMD19-T to obtain pMD19-T-NtCIPK23 and pMD19-T-ProNtCIPK23, respectively.
To construct the expression vector for subcellular localization, NtCIPK23 segment
was amplified from plasmid pMD19-T-NtCIPK23, using the primer pair NtCIPK23-3F-
NcoI/NtCIPK23-7R-SalI. PCR products were digested with NcoI and SalI, and ligated into
the NcoI/SalI-digested pCambia1300. The plasmid was named as pCambia1300-NtCIPK23-
GFP. To generate the overexpressing vector of NtCIPK23, pMD19-T-NtCIPK23 (reverse
insertion) plasmid was digested by SmaI/SalI, and the released segment was ligated into
SmaI/SalI-digested pCHF3. For the construction of the pBI101-ProNtCIPK23::GUS vector,
the primer pair NtCIPK23pro-2F-HindIII/NtCIPK23pro-2R-BamHI was used. The PCR
product was digested with HindIII and BamHI and cloned into HindIII/BamHI-digested
pBI101 vector.
The potential guide RNA (gRNA) sequence was initially obtained by CRISPR Multi-
Targeterbased on the sequence of NtCIPK23
CDS. The main principles behind the screening of potential gRNA target were that (1)
the binding position of gDNA should be close to the transcription initiation site; (2) the
binding position of gRNA should be within the coding frame; and that (3) the gRNA is
specific to distinguish NtCIPK23 and its homologous genes in ZY100. Based on the analysis
of CRISPR MultiTargeter and the outlined requirements above, a potential primer target
(ATGATGTAGGGAGGACCCTTGGG) was obtained. Before the synthesis of gRNA primer,
(1) NGG was deleted; (2) one G was added, if the 5 0 end was not G; (3) the reverse comple-
mental primer was acquired; and (4) GATT at 5 0 end of forward primer and AAAC at 5 0
end of reverse primer were also added, respectively. The primer pair NtCIPK23CR-1Target-
1F/NtCIPK23CR-1Target-1R of gRNA was obtained. The gRNA expression cassette wasthen inserted into BsaI-HF (NEB company)-digested pORE-Cas9 binary vector to generate
the NtCIPK23-CRISPER/Cas9 vector [42].
The primers used in the experiments are shown in Table S2. All clones derived
from the PCR products were verified by sequencing, and the recombinant plasmids were
confirmed by restriction analyses.
4.3. RNA Extraction, RT-PCR, and Real-Time Quantitative PCR (RT-qPCR) Analyses
To test the expression level of exogenous NtCIPK23, total RNA was extracted from
the leaves of transgenic plants, using a phenol-based method [ 31 ]. cDNA was synthesized
from 1 µ g total RNA for RT-PCR, using the PrimeScriptTM RT kit (TaKaRa Biotechnology
Co., Ltd., Dalian, China). NtL25 is a ribosomal protein gene (Accession No. L18908), widely
used as a common internal control in N. tobacum [ 43 – 45 ]. The primer pairs NtCIPK23-
qF/pCHF3-Allcheck-2 and NtL25-F/NtL25-R were used to detect the expression levels of
exogenous NtCIPK23 and relative quantification in RT-PCR [ 43 ]. The primer pair NtCIPK23-
qF/pCHF3-Allcheck-2 was used to detect the expression levels of exogenous NtCIPK23
in RT-PCR. The pCHF3-Allcheck-2 is a specific reverse primer antisense to the adjacent
sequence, exactly after the multiple cloning sites of transgenic vector pCHF3 (Figure S1).
In RT-PCR, only the transcripts of exogenous NtCIPK23, but not those of endogenous
NtCIPK23, were amplified as the templates. The amplification reactions were performed
in a total volume of 20 µ L, which contained 7.2 µ L ddH 2 O, 0.8 µ L forward and reverse
primers (10 µ M), and 2 µ L cDNA (diluted 10 times after synthesis), 10 µ L 2 × rTaq Mix
(TaKaRa Biotechnology Co., Ltd., Dalian, China). PCR was conducted as follows: 95
? C for
3 min, followed by 30 cycles of 95
? C for 30 s and 55 ? C for 30 s and 72 ? C for 1 min, then
72
? C for 10 min.
To investigate the expressional changes of NtCIPK23 in the hypocotyl, RT-qPCR was
conducted. Total RNA was extracted from the hypocotyl of ZY100 plants treated in the
dark or under light (at 6 DAS). The cDNA synthesis method was the same as the above
process. The SYBR Premix Ex TaqTM (TaKaRa Biotechnology Co., Ltd., Dalian, China) kit
was used for quantitative analysis. Specific primer pairs NtCIPK23-qF/NtCIPK23-qR and
NtL25-F/NtL25-R were used for RT-qPCR and relative quantification, respectively. The
mean values of at least three biological replicates were normalized using the NtL25 gene as
the internal controls [ 45 ] The amplification reactions were performed in a total volume of
20 µ L, which contained 10 µ L 2 × SYBR Premix Ex TaqTM, 7.2 µ L ddH 2 O, 0.8 µ L forward
and reverse primers (10 µ M), and 2 µ L cDNA (diluted 10 times after synthesis). PCR was
conducted as follows: 95
? C for 1 min, followed by 40 cycles of 95 ? C for 10 s and 60 ? C for
34 s. Relative quantitative analysis was performed using the standard curve method, and
the instrument used was Roche LightCycler 96 Instrument (Roche Molecular Systems, Inc.,
Basel, Switzerland). Three biological replicates were included for data quantification. The
primers used in the experiments are shown in Table S2.
4.4. Generation of Transgenic Materials
To generate the NtCIPK23-overexpressing lines and ProNtCIPK23::GUS transgenic
plants, pCHF3-NtCIPK23 vector and pBI101-ProNtCIPK23::GUS vector were transformed
into Agrobacterium tumefaciens EHA105, respectively, and then introduced into N. tabacum
L. cv. Zhongyan100 via the Agrobacterium-mediated method [ 46 ]. Thirty-four NtCIPK23-
overexpressing plants and 16 ProNtCIPK23::GUS transgenic plants were screened out by
genomic PCR and RT-PCR/GUS staining. The seeds (T1 generation) of transgenic lines
were screened on 1/2 MS medium containing 50 µ g/mL kanamycin, and were selectively
propagated for T2 generations to obtain the homozygous lines. Seven independent and
homozygous T2 overexpressing lines with single copy insertion were finally selected,
and 6 lines exhibited similar phenotypes in germination and early seedling growth. Two
lines (T2-OE-15-11 and T2-OE-25-4, referred to as OE15 and OE25, respectively) were
selected for phenotype analysis. As to the ProNtCIPK23::GUS materials, 3 independentand homozygous T2 lines with single copy insertion exhibiting similar expression pattern,
were finally obtained. T2-55-13 was selected for expression analysis of NtCIPK23.
To obtain loss-of-function materials of NtCIPK23, CRISPR/Cas9 system was used for
targeted mutagenesis of NtCIPK23 in ZY100 [ 42 ]. The workflow is shown in Figure S1 .
To generate independent C0 plants, all transgenic seedlings were separated from differ-
ent tobacco calluses (one seedlings-one callus) and transferred to the rooting medium;
52 C0 plants were obtained. Among these plants, 17 C0 plants were confirmed to be
edited via direct sequencing of PCR products, using the specific primer pair NtCIPK23-
1-UTR2F/NtCIPK23-1-145R, which could distinguish NtCIPK23 from other tobacco ho-
mologs. Same PCR products were then cloned into pMD19-T vector, and the gene editing
events were confirmed by the monoclonal sequencing (clone number > 80). The C0 plants,
in which all 80 clones showed the same editing site, were considered to be NtCIPK23-edited
homozygous lines. There were 6 homozygous and 12 heterozygous plants, respectively.
All 6 plants exhibited the same C deletion at the target site, which resulted in a frameshift
at the 5 0 -terminal region of NtCIPK23 transcripts and finally led to translation termination
( Figure S2 ). The seeds of C0 homozygous seedlings (C1 generation) were obtained indi-
vidually by self-pollination, and their editing condition was confirmed again by another
cycle of sequencing (clone number > 80). The 6 C1 lines showed similar developmental
phenotypes, and a typical homozygous line (C1-33#) was designated as the ntcipk23 mutant
and used in the experiments. The primers used in the experiments are shown in Table S2.
4.5. GUS Histochemical Assay
Germination of ProNtCIPK23::GUS seeds occurred within 3 days after sowing (DAS)
(denoted as radicle emergence through the seed coat). Seedlings at different growth
stages, including the micropylar endosperm rupture, radicle emergence and elongation,
hypocotyl elongation, cotyledon emergence and expansion, cotyledon maturation, and
emergence and expansion of the first two leaves, were selected for GUS histochemical
staining. The samples were completely immersed in GUS staining solution (Lot.1127A19,
Beijing Leagene Biotechnology Co., Ltd., Beijing, China) and incubated at 37
? C for 24 h.
Afterwards, the chlorophyll of the samples was completely removed with ethanol for the
microscope observation.
4.6. Subcellular Localization Assay
The pCambia1300-NtCIPK23-GFP plasmid, PM (Plasma membrane) marker pm-rk
CD3-1007 and pGDp19 were transformed into A. tumefaciens EHA105, and were then infil-
trated into leaves of N. benthamiana, as described previously [ 29 ]. Pictures were captured
with confocal microscope (Leica TCP SP8, Leica Microsystems, Germany), 48 h after infil-
tration. The GFP was excited at 488 nm and its emission was captured at 550–590 nm [ 47 ].
The mCherry was detected at 543 nm and its emission was captured at 570–600 nm.
4.7. Measurement and Statistical Analysis
Radicle protrusion was used as an indicator for seed germination. Green cotyledon
percentage was determined to indicate the tobacco post-germination seedling growth.
Generally, the radicle breaks through seed coat within 3 DAS. When the radicle began to
protrude from the testa, the germination percentage was measured (during 2.5~3.5 DAS).
The green cotyledon percentage was calculated when the cotyledon began to turn green
(during 3~5 DAS). To measure the cotyledon size of seedlings, mature cotyledons of the
seedlings at 8 DAS were sampled and placed on 1/2 MS medium, and the images were
taken by an automatic colony counter (Shineso 2.0, Hangzhou Shineso Biotechnology
Co., Ltd., Hangzhou, China). To measure the hypocotyl length, the seedlings at 8 DAS
were taken out of the 96-well PCR plates and washed gently by water, and pictures of
the images were taken. The seedlings required for the measurement of hypocotyl length
in the dark (wrapped by aluminum foil) were sampled at 6 DAS. Each experiment was
independently performed using three biological repeats with three technical replicates.

The number of seedlings for the measurements of green cotyledon percentage, cotyledon
size, and hypocotyl length were about 100 seedlings, 24 cotyledons (from 12 seedlings),
and 20 hypocotyls for each plant materials in one biological repeat. All seedlings were
randomly selected.
Cotyledon area and hypocotyl length were measured by the image processing software
ImageJ . Data obtained by ImageJ were analyzed by one-way
ANOVA using the statistical software SPSS 16.0 and were
demonstrated by OriginPro 9.0 
Supplementary Materials: The following are available online at 
7/10/2/323/s1. Figure S1: The acquisition workflow of the ntcipk23 mutant; Figure S2: Translation
overview of NtCIPK23 CDS from ZY100 and ntcipk23; Figure S3: The GUS staining analysis of
ProNtCIPK23::GUS transgenic tobacco plants during the hypocotyl elongation stage under light
and in the dark; Figure S4: The multiple cloning sites of the over-expressing vector pCHF3 and the
position of the specific primer pCHF3-Allcheck-2; Table S1: The list of cis-acting elements predicted
in NtCIPK23 promoter; and Table S2: Primers used in the experiments.
Author Contributions: Formal analysis, S.S. and L.A.; investigation, S.S., L.A., J.M., and F.X.; method-
ology, S.S., L.A., and Q.W.; resources, S.S. and L.A.; writing-original draft, S.S., L.A., and Q.W.;
validation, J.M.; visualization, J.M. and O.O.A.; writing-review & editing, O.O.A., Z.U., F.X., and G.L.;
conceptualization, H.L. and Q.W.; funding acquisition, H.L. and Q.W.; supervision, H.L. and Q.W.;
project administration, H.L. and Q.W. All authors have read and agreed to the published version of
the manuscript.
Funding: This work was provided by Natural Science Foundation of Shandong Province, China
(ZR2017QC003), International Foundation Tobacco Research Institute of CAAS (IFT202102) and the
Agricultural Science and Technology Innovation Program (ASTIP-TRIC02 and ASTIP-TRIC03).
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: The data presented in this study are available on request from the
corresponding author.
Acknowledgments: We are grateful to Andreas Nebenführ (University of Oklahoma Health Sciences
Center, USA) for kindly providing the plasma membrane marker pm-rk CD3-1007.
Conflicts of Interest: The authors declare no conflict of interest.

 

References
1. Reddy, A.S.N. Calcium: Silver bullet in signaling. Plant Sci. 2001, 160, 381–404. [CrossRef]
2. Batistic, O.; Kudla, J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase
network. Planta 2004, 219, 915–924. [CrossRef]
3. Weinl, S.; Kudla, J. The CBL-CIPK Ca 2+ -decoding signaling network: Function and perspectives. New Phytol. 2009 , 184,
517–528. [CrossRef]
4. Luan, S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci. 2009, 14, 37–42. [CrossRef] [PubMed]
5. Mao, J.; Manik, S.M.N.; Shi, S.; Chao, J.; Jin, Y.; Wang, Q.; Liu, H. Mechanisms and physiological roles of the CBL-CIPK networking
system in Arabidopsis thaliana. Genes 2016, 7, 62. [CrossRef] [PubMed]
6. Coello, P.; Hey, S.J.; Halford, N.G. The sucrose non-fermenting-1-related (SnRK) family of protein kinases: Potential for manipula-
tion to improve stress tolerance and increase yield. J. Exp. Bot. 2011, 62, 883–893. [CrossRef] [PubMed]
7. Sánchez-Barrena, M.J.; Martínez-Ripoll, M.; Albert, A. Structural biology of a major signaling network that regulates plant abiotic
stress: The CBL-CIPK mediated pathway. Int. J. Mol. Sci. 2013, 14, 5734–5749. [CrossRef]
8. Xiang, Y.; Huang, Y.; Xiong, L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant
Physiol. 2007, 144, 1416–1428. [CrossRef]
9. Chen, X.; Gu, Z.; Xin, D.; Hao, L.; Liu, C.; Huang, J.; Ma, B.; Zhang, H. Identification and characterization of putative CIPK genes
in maize. J. Genet. Genomics 2011, 38, 77–87. [CrossRef] [PubMed]
10. Sun, T.; Wang, Y.; Wang, M.; Li, T.; Zhou, Y.; Wang, X.; Wei, S.; He, G.; Yang, G. Identification and comprehensive analyses of the
CBL and CIPK gene families in wheat (Triticum aestivum L.). BMC Plant Biol. 2015, 15, 269. [CrossRef]
11. Zhu, K.; Chen, F.; Liu, J.; Chen, X.; Hewezi, T.; Cheng, Z.M. Evolution of an intron-poor cluster of the CIPK gene family and
expression in response to drought stress in soybean. Sci. Rep. 2016, 6, 28225. [CrossRef] [PubMed]

12. Aleman, F.; Nieves-Cordones, M.; Martinez, V.; Rubio, F. Root K + acquisition in plants: The Arabidopsis thaliana model. Plant Cell
Physiol. 2011, 52, 1603–1612. [CrossRef] [PubMed]
13. Li, L.; Kim, B.-G.; Cheong, Y.H.; Pandey, G.K.; Luan, S. A Ca 2+ signaling pathway regulates a K + channel for low-K response in
Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 12625–12630. [CrossRef]
14. Ragel, P.; Ródenas, R.; García-Martín, E.; Andrés, Z.; Villalta, I.; Nieves-Cordones, M.; Rivero, R.M.; Martínez, V.; Pardo, J.M.;
Quintero, F.J. The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K + uptake in Arabidopsis roots.
Plant Physiol. 2015, 169, 2863–2873.
15. Xu, J.; Li, H.; Chen, L.; Wang, Y.; Liu, L.; He, L.; Wu, W. A protein kinase, interacting with two calcineurin B-like proteins,
regulates K + transporter AKT1 in Arabidopsis. Cell 2006, 125, 1347–1360. [CrossRef]
16. Li, J.; Long, Y.; Qi, G.; Li, J.; Xu, Z.; Wu, W.; Wang, Y. The Os-AKT1 channel is critical for K + uptake in rice roots and is modulated
by the rice CBL1-CIPK23 complex. Plant Cell 2014, 26, 3387–4402. [CrossRef]
17. Cuellar, T.; Pascaud, F.; Verdeil, J.L.; Torregrosa, L.; Adam-Blondon, A.F.; Thibaud, J.B.; Sentenac, H.; Gaillard, I. A grapevine
shaker inward K + channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in
grape berries under drought stress conditions. Plant J. 2010, 61, 58–69. [CrossRef]
18. Ho, C.H.; Lin, S.H.; Hu, H.C.; Tsay, Y.F. CHL1 functions as a nitrate sensor in plants. Cell 2009 , 138, 1184–1194. [CrossRef] [PubMed]
19. Leran, S.; Edel, K.H.; Pervent, M.; Hashimoto, K.; Corratge-Faillie, C.; Offenborn, J.N.; Tillard, P.; Gojon, A.; Kudla, J.; Lacombe, B.
Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid.
Science Signalling 2015, 8, ra43. [CrossRef]
20. Straub, T.; Ludewig, U.; Neuhäuser, B. The kinase CIPK23 inhibits ammonium transport in Arabidopsis thaliana. Plant Cell 2017 , 29,
409–422. [CrossRef]
21. Shi, S.; Xu, F.; Ge, Y.; Mao, J.; An, L.; Deng, S.; Ullah, Z.; Yuan, X.; Liu, G.; Liu, H.; et al. NH 4 + toxicity, which is mainly determined
by the high NH 4 + /K + ratio, is alleviated by CIPK23 in Arabidopsis. Plants 2020, 9, 501. [CrossRef]
22. Tang, R.J.; Zhao, F.G.; Garcia, V.J.; Kleist, T.J.; Yang, L.; Zhang, H.X.; Luan, S. Tonoplast CBL-CIPK calcium signaling network
regulates magnesium homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2015, 112, 3134–3139. [CrossRef]
23. Hedrich, R.; Kudla, J. Calcium signaling networks channel plant K + uptake. Cell 2006, 125, 1221–1223. [CrossRef]
24. Negi, J.; Matsuda, O.; Nagasawa, T.; Oba, Y.; Takahashi, H.; Kawai-Yamada, M.; Uchimiya, H.; Hashimoto, M.; Iba, K. CO 2
regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 2008, 452, 483–486. [CrossRef]
25. Yan, Y.; He, X.; Hu, W.; Liu, G.; Wang, P.; He, C.; Shi, H. Functional analysis of MeCIPK23 and MeCBL1/9 in cassava defense
response against Xanthomonas axonopodis pv. manihotis. Plant Cell Rep. 2018, 37, 887–900. [CrossRef]
26. Yang, W.; Kong, Z.; Omo-Ikerodah, E.; Xu, W.; Li, Q.; Xue, Y. Calcineurin B-like interacting protein kinase OsCIPK23 functions in
pollination and drought stress responses in rice (Oryza sativa L.). J. Genet. Genom. 2008, 35, 531–543. [CrossRef]
27. Footitt, S.; Olcer-Footitt, H.; Hambidge, A.J.; Finch-Savage, W.E. A laboratory simulation of Arabidopsis seed dormancy cycling
provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA. Plant
Cell Environ. 2017, 40, 1474–1486. [CrossRef] [PubMed]
28. Inoue, S.; Kaiserli, E.; Zhao, X.; Waksman, T.; Takemiya, A.; Okumura, M.; Takahashi, H.; Seki, M.; Shinozaki, K.; Endo, Y.; et al.
CIPK23 regulates blue light-dependent stomatal opening in Arabidopsis thaliana. Plant J. 2020 , 104, 679–692. [CrossRef] [PubMed]
29. Nelson, B.K.; Cai, X.; Nebenfuhr, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and
other plants. Plant J. 2007, 51, 1126–1136. [CrossRef]
30. Batistic, O.; Waadt, R.; Steinhorst, L.; Held, K.; Kudla, J. CBL-mediated targeting of CIPKs facilitates the decoding of calcium
signals emanating from distinct cellular stores. Plant J. 2010, 61, 211–222. [CrossRef] [PubMed]
31. Ródenas, R.; Vert, G. Regulation of root nutrient transporters by CIPK23: “one kinase to rule them all”. Plant Cell Physiol. 2020 ,
pcaa 156. [CrossRef]
32. Wang, P.; Hsu, C.; Du, Y.; Zhu, P.; Zhao, C.; Fu, X.; Zhang, C.; Paez, J.; Macho, A.; Tao, W.; et al. Mapping proteome-wide targets
of protein kinases in plant stress responses. Proc. Natl. Acad. Sci. USA 2020, 117, 3270–3280. [CrossRef]
33. Sadhukhan, A.; Enomoto, T.; Kobayashi, Y.; Watanabe, T.; Iuchi, S.; Kobayashi, M.; Sahoo, L.; Yamamoto, Y.; Koyama, H. Sensitive
to proton rhizotoxicity 1 regulates salt and drought tolerance of Arabidopsis thaliana through transcriptional regulation of CIPK23.
Plant Cell Physiol. 2019, 60, 2113–2126. [CrossRef] [PubMed]
34. Zheng, Y.; Cui, X.; Su, L.; Fang, S.; Chu, J.; Gong, Q.; Yang, J.; Zhu, Z. Jasmonate inhibits COP1 activity to suppress hypocotyl
elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Plant J. 2017, 90, 1144–1155. [CrossRef]
35. Folta, K.M.; Spalding, E.P. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue
light-mediated hypocotyl growth inhibition. Plant J. 2001, 26, 471–478. [CrossRef]
36. Sánchez-Barrena, M.; Chaves-Sanjuan, A.; Raddatz, N.; Mendoza, I.; Cortés, Á.; Gago, F.; González-Rubio, J.; Benavente, J.;
Quintero, F.J.; Pardo, J.M.; et al. Recognition and activation of the plant AKT1 potassium channel by the kinase CIPK23. Plant
Physiol. 2020, 182, 2143–2153. [CrossRef] [PubMed]
37. Butler, J.E.F.; Kadonaga, J.T. The RNA polymerase II core promoter: A key component in the regulation of gene expression. Genes
Dev. 2002, 16, 2583–2592. [CrossRef]
38. Wang, Y.; Chen, Y.F.; Wu, W.H. Potassium and phosphorus transport and signaling in plants. J. Integr. Plant Biol. 2020 . [CrossRef]
39. Gendreau, E.; Jraas, T.; Desnos, T.; Grandjean, O.; Caboche, M.; Höfte, H. Cellular basis of hypocotyl growth in Arabidopsis thaliana.
Plant Physiol. 1997, 114, 295–305. [CrossRef]

40. Zhong, S.; Shi, H.; Xue, C.; Wei, N.; Guo, H.; Deng, X.W. Ethylene-orchestrated circuitry coordinates a seedling’s response to soil
cover and etiolated growth. Proc. Natl. Acad. Sci. USA 2014, 111, 3913–3920. [CrossRef] [PubMed]
41. Forcella, F.; Arnold, R.L.B.; Sanchez, R.; Ghersa, C.M. Modeling seedling emergence. Field Crops Res. 2000 , 67, 123–139. [CrossRef]
42. Gao, J.; Wang, G.; Ma, S.; Xie, X.; Wu, X.; Zhang, X.; Wu, Y.; Zhao, P.; Xia, Q. CRISPR/Cas9-mediated targeted mutagenesis in
Nicotiana tabacum. Plant Mol. Biol. 2015, 87, 99–110. [CrossRef]
43. Schmidt, G.W.; Delaney, S.K. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum)
during development and abiotic stress. Mol. Genet. Genom. 2010, 283, 233–241. [CrossRef]
44. Wu, M.L.; Cui, Y.C.; Ge, L.; Cui, L.P.; Xu, Z.C.; Zhang, H.Y.; Wang, Z.J.; Zhou, D.; Wu, S.; Chen, L.; et al. NbCycB2 represses Nbwo
activity via a negative feedback loop in tobacco trichome development. J. Exp. Bot. 2020, 71, 1815–1827. [CrossRef]
45. Trolet, A.; Baldrich, P.; Criqui, M.C.; Dubois, M.; Clavel, M.; Meyers, B.C.; Genschik, P. Cell cycle-dependent regulation and
function of ARGONAUTE1 in plants. Plant Cell 2019, 31, 1734–1750. [CrossRef] [PubMed]
46. Horsch, R.; Fry, J.; Hoffmann, N.; Eichholtz, D.; Rogers, S. A simple and general method for transferring genes into plants. Science
1985, 227, 1229.
47. Dong, L.; Wang, Q.; Manik, S.M.N.; Song, Y.; Shi, S.; Su, Y.; Liu, G.; Liu, H. Nicotiana sylvestris calcineurin B-like protein NsylCBL10
enhances salt tolerance in transgenic Arabidopsis. Plant Cell Rep. 2015, 34, 2053–2063. [CrossRef] [PubMed]

杭州迅數科技有限公司
服務熱線:0571-85125132
掃碼關注我們
Copyright © 2025 杭州迅數科技有限公司 版權所有   備案號:浙ICP備06012639號-2 技術支持:化工儀器網   管理登陸   sitemap.xml
熟女乱一区二区三区在线| 在线观看视频区二区三区 | 亚洲人妻巨乳中文字幕| 国产精品99久久精品| 人妻激情综合久久久久| 日韩欧美在线一区二区| 日韩一区二区三区三级| 日韩欧美精品一区二区免费| 国产午夜精品在线免费看| 日本福利片国产午夜久久| 精品日韩在线视频网站| 国产精品污污污免费网站| 亚洲国产精品自在久久| 男女啊啊视频在线观看| 日韩美女午夜在线视频| 免费国产老熟女免费视频| 日本精品一二区不卡视频| 亚洲欧美精品一区在线看| 欧美亚洲偷拍一区二区| 国产精品久久久久久妇女| 亚洲一区二区字幕综合| 中文字幕在一区二区三区| 国产精品国三级国产av| 大屁股熟女一区二区三区| 日韩欧美一卡二卡在线| 丝袜美腿诱惑一区二区三区| 欧美激情成人在线免费观看| 人妻禁断一区二区三区| 国产高清视频一区二区乱| 天天综合久久天天综合| 欧美激情综合在线视频| 精品人妻系列在线观看| 日韩午夜激情福利免费| 亚洲欧美在线观看啊啊啊| 国产欧美日韩亚洲综合| 亚洲午夜精品久久久久人妖| 精品性高潮久久久久久久| 免费午夜影片在线观看| 成年在线观看视频网站| 亚洲色图自拍在线观看| 欧美一本在线中文字幕| 色婷婷综合久久久久桃花| 日日久久一区二区三区| 亚洲欧洲日本韩国精品| 91孕妇精品一区二区| 日本特黄一级在线观看| 中出一区二区三区四区| 亚洲二区在线播放视频| 日韩乱妇乱女熟女av| 爆操美女在线观看视频| 精品男女激情视频久久| 亚洲美女视频永久网址| 中文字幕视频免费播放| 在线观看免费国产精品| 国产精品美女福利在线| 欧美色精品日韩在线视频| 大尺度激情视频日韩网站| 国产精品一区二区在线| 欧美日韩精品二区 三区| 中文字幕欧美在线人妻| 最新激情中文字幕视频| 国产欧美一区二区三区如水| 亚洲免费看一区二区三区| 亚洲一区二区在线偷拍| 日韩性生活视频播放| 爱爱免费视频一区二区三区| 欧美伊人久久成人综合网| 在线精品一区二区不卡| 久操在线视频免费观看| 成人在线观看亚洲天堂| 青青草伦理视频在线播放| 色综合激情综合久久综合| 国产av无线高清在码线| 最新国产精品不卡在线| 999久久久亚洲天堂| 视频欧美人妻中文在线| 日韩高清网站在线观看| 亚洲国产精品99久久久| 天堂网中文字幕人妻熟女| 国产中文亚洲熟女日韩| 青青草一个释放的网站| av成人教育在线播放| 国产一区二区三区裙底在线| 日韩一区二区三区三级| 欧美顶级一区二区三区| 日日干夜夜爽天天舔天天插| 午夜免费一区二区视频| 四虎成人精品在永久在线| 国产三级美女在线观看| 欧美黄片一区二区三免费| 欧美日韩美女视频在线| 在线观看福利中文字幕| 天堂网中文字幕人妻熟女| 精品偷拍女厕一区二区| 久久久亚洲精品久久久| 综合色视频不卡一区二区| 一区二区三区日本专区| 中文字幕亚洲国产剧情| 日本在线东京热在线观看| 色婷婷在线视频免费观看| 天天躁狠狠躁日日躁黑人| 在线播放1区2区3区| 亚洲一区二区少妇系列| 久久青草综合激情五月天| 精品久久久精品久久久久| 精品日韩在线视频网站| 国产论理视频在线观看| 日韩精品女同一区二区三区| 成人亚洲国产综合精品| 亚洲小视频在线观看视频| 男人的天堂av高清在线| 日本新视频一区二区三区| 欧美一区二区三在线播放| 日本岛国一区二区三区| 97人妻人人揉人人澡原| 欧美精品日韩精品国产成人 | 亚洲视频网站在线播放| 精品中文字幕久久久久久| 国产一级熟女高潮大全| 狠狠婷婷久久精品一区二区| 熟女人妻一区二区三区| 亚洲乱码精品久久久久久久| 欧美丰满人妻免费视频| 在线视频一区二区精品| 欧美激烈一区二区三区| 丁香色婷婷国产精品视频| 麻豆特殊视频免费观看| 美女一抽一插啪啪试看| 色婷婷的在线观看视频| 男人天堂色男人在线视频| 色婷婷国产一区二区三区| 91色婷婷视频在线观看| 久久亚洲综合精品人妻| 久久久久国产精品福利| 国内精品伊人久久久久网| 国产人妻麻豆一区二区| 亚洲黄欧美一区二区三区| 日韩精品中文字幕av在线| 麻豆精品一区二区av白丝在线| 欧美日韩色精品人妻在线视频| 青青草91在线免费观看| 国产美女精品免费网站| 在线观看视频二区三区| 99伊人中文字幕一区综合在线 | 日韩欧美美女福利视频| 精品日韩在线视频网站| 国产一区二区三区线观看| 日韩欧美国产一区二区三| 日韩午夜福利在线入口| 成人v精品蜜桃久久一区| 国产床上精品免费大片| 亚洲日产一区二区三区| 十八禁看网站在线观看| 欧美日韩亚洲综合激情| 国产精品女人久久久久| 亚洲中文字幕乱码精品区| 亚洲网中文字幕久久久| 99精品国产综合久久久蜜臀| 久久综合九色综合久桃花| 午夜久久精品福利视频| 国产女人网站在线观看| 中文字幕免费视频播放| 最近日本中文字幕中文| 亚洲人妻在线观看视频| 五月综合婷婷久久综合网| 精品人妻中文字幕播放| 日本人妻有码中文字幕| 蜜桃臀av永久免费看片| 免费大片日本一级特黄| 久久大香蕉亚洲男人天堂| 国产成人在线观看不卡一区| 在线视频一区二区精品| 午夜欧美福利视频一区| 欧美另类激情久久久久| 蜜桃成人午夜免费视频| 99伊人中文字幕一区综合在线| 色狠狠av五综合久久久| 欧美亚洲素人制服精品| 国产老夫妻免费在线精品| 亚洲精品一区二区三区小| 久操在线视频免费观看| 男女黄网站色大片免费看| 亚洲成人午夜福利综合网 | 亚洲 欧美在线不卡一区| 丁香婷婷一区二区三区| 亚洲国产精品99久久久| 天天爽夜夜爽人人爽曰| 中国少妇与黑人一二三区| 欧美成人一区二区在线| 午夜少妇饥渴难耐一区| av成人教育在线播放| 国产福利在线观看欧美| 日韩一本一区二区三区| 欧美日韩美女视频在线| 亚洲一级特黄大片在线播放| 美女被插一区二区三区| 久久亚洲精品国产精品婷婷| 中文字幕有码日韩精品| 日韩在线欧美一区二区三区| 亚洲视频在线播放网址| 成人公开成人免费视频| 伊人久久一区二区三区导航| 欧美人与性动交欧美精品| 国产中文字幕久久黄色片| 精品午夜福利短视频一区| 日韩黄色一级片中文字幕| 人人妻人人玩人人妻精品| 精品人妻少妇一区二区三区| 日韩精品高清一区二区三区| 污污污视频在线免费观看| 中文字幕av中文不卡| 96亚洲精品久久久蜜桃| 最新中文字幕在线观看中| 国产欧美日韩综合一区| 欧美精品国产成人综合亚洲| 欧美激情视频在哪里看| 成人av一区二区无字幕| 韩国精品视频一区二区| 亚洲精品视频人妻系列| 国产美女在线观看网站| 欧美日韩专区在线播放| 成人国产一区二区在线看| 视频不卡一区二区三区| 男女爱爱视频免费国产| 日本精品一二区不卡视频| 在线观看亚洲区一区二区| 精品噜噜视频免费在线观看 | 国产成人亚洲精品一区二区| 美女擦边一区二区三区| 亚洲av日韩av自拍偷拍| 欧美激情综合久久久久| 在线精品一区二区不卡| 熟女人妻诱惑在线观看| 91精品一区二区三区久久| 亚洲精品成人久久国产| 黄色美女日本的美女日人 | 在线视频观看人妻中文| 91精品国产一区二区三区在线| 日韩午夜激情福利免费| 日韩美女在线视频一区| 亚洲午夜精品久久久久人妖| 亚洲无一区二区三区在线| 免费观看日韩欧美网站| 欧美午夜一区二区国产区| 在线激情视频欧美一区| 青青草这里只有精品久久| 国产欧美日韩综合一区| 久草精品免费在线观看| 中文字幕免费视频播放| 国产亚洲av成人噜噜噜| 欧美激情视频在哪里看| 久久久午夜视频在线观看| 精品男女激情视频久久| 国产午夜精品久久久久婷| 国产日韩欧美在线免费观看| 日本特黄免费在线观看| 最新中文字幕在线观看中| 日韩视频中文字幕在线| 日韩又湿又黄的视频网站| 成人免费播放一区二区三区| 亚洲午夜精品久久久久人妖 | 成人午夜免费观看视频| 久久婷婷狠狠综合激情| 一区二区三区制服精品| 在线精品一区二区不卡| 日韩一区二区三区三级| 国产成人亚洲精品一区二区| 叼嗨视频在线看网站免费| 日韩乱妇乱女熟女av| 中文字幕免费中文字幕| 亚洲人妻久久久中文字幕| 亚洲欧美在线观看啊啊啊| 久久久久国产精品福利| 视频欧美人妻中文在线| 亚洲精品国产成人精品| 欧美成人午夜在线视频| 亚洲不卡中文字幕资源网| 欧美日韩国产福利精品| 一级黄片欧美久久久久| 夜夜躁日日躁狠狠久久| 韩国一区二区三区国产| 日韩美女在线视频一区| av在线网站丝袜观看| 春色校园综合激情亚洲| 五月婷中文字幕在线观看| 欧美日韩亚洲另类人人澡| 变态调教一区二区三区| 亚洲中文字幕久久人妻| 天天干夜夜操激情黄色| 精品日韩一区二区三区| 欧美激情亚洲综合在线| 人人都爱看大香蕉操片| 五月综合婷婷久久综合网| 色婷婷av综合全线在线| 日韩久区二区三区天天| 精品成人在线观看视频日韩| 五月天丁香激情久久一区| 精品人妻区二区三区蜜桃| 丝袜美腿在线一区二区| 亚洲另类色区欧美日韩| 精品国产美女网站免费| 亚洲欧美综合区丁香六月| 青草成人在线观看视频| 免费不卡日本二区视频| 亚洲男人天堂一级黄色片| 91精品婷婷色在线观看| 欧美亚洲一区二区免费| 日韩不卡一区不卡二区| 亚洲色图自拍在线观看| 新中文字幕一区二区三区| 日本熟妇色高清免费视频| 日本大胆裸体做爰视频| 好大好爽好硬日本视频| 日韩午夜免费三区视频| 变态调教一区二区三区| 最新中文字幕人妻伊人网| 水蜜桃精品亚洲一区二区| 国产一区二区三区黄色网| 岛国尤物视频在线观看| 蜜桃精品一区二区在线观看| 黄片一区二区三区免费看| 欧美一区二区三区啪啪啪| 日本老熟女一区二区三区| 欧美性做爰一区二区三区| 五月婷婷免费观看视频| 91成人国产短视频在线| 老熟女乱淫一区二区三区| 国产又黄又刺激妇女av| 国产精品久久久久久久密桃| 成人v精品蜜桃久久一区| 美女少妇午夜爽爽视频| 本庄优花人妻中文丝袜| 午夜免费在线观看啪视频| 午夜精品区一区二区三| 国产成人av一区二在线| 久久天堂视频在线观看| 欧美一区二区不卡网站| 婷婷精品视频免费观看| 午夜免费啪在线观看视频| 国产精品美女制服诱惑| 青青草国产福利一区二区| 欧美一区二区三区啪啪啪| 美女私密写真亚洲伊人成| 欧美一区二区三区被x| 日韩又湿又黄的视频网站| 亚洲美女精品视频久久久| 尤物视频免费观看网站| 久久久夜色精品亚洲网站| 一二三不卡区免费视频| 亚洲一区二区欧美三区| 亚洲人妻在线观看视频| 精品久久久久久中文字幕| 免费不卡日本二区视频| 成人在线免费福利视频| 91精品人妻一区二区三| 日韩有码中文字幕欧美| 中文字幕亚洲综合一区| 男女在线观看一区视频| 18禁av免费观看网站| 精品呦呦视频在线观看| 丁香婷婷一区二区三区| 免费国产老熟女免费视频| 日韩视频中文字幕在线| 免费久久久人妻一区精品| 亚洲女少妇一区二区三区| 久久久久久日本亚洲精品| 国产精品亚洲精品爽爽| 超在线中文有码观看视频| 日韩欧美有码中文字幕| 国产精品久久久久久妇女| 伊人伊成久久综合波野多| 男女视频在线观看午夜| 里崎爱佳av中文字幕| 播放国产免费一级黄片| 一区二区精品三区亚洲人妻| 男人天堂av一区二区| 亚洲天堂成人av在线看| 中文字幕三级在线看午夜| 欧美三级成人一区二区| 国产精品福利一级久久| 日产国产精品亚洲高清| 欧美亚洲制服一区二区| 亚洲欧美在线观看啊啊啊| 男人的天堂av高清在线| 日韩精品在线视频第一页| 中文字幕乱码熟女第一区| 亚洲国产欧美日韩另类| 国产一区二区三区线观看| 一区二区三区欧美在线免费| 午夜视频在线免费观看视频| 成人公开成人免费视频| 可以看黄的福利视频网站| 成人午夜在线免费播放| 亚洲精品成人久久国产| 日本黄色三级在线观看| 在线中文字幕亚洲一区| 亚洲小视频在线观看视频| 欧美成人一区二区在线| 另类激情一区二区三区| 国产欧美精品一二三四区| 日韩高清网站在线观看| 欧美寂寞少妇在线观看| 午夜在线播放免费人成年| 中文字幕免费视频播放| 999久久久亚洲天堂| 欧美啪啪视频免费大全| 久久久久久日本亚洲精品| 中文字幕国产精品人妻| 亚洲精品国产美女久久久| 欧美黄色免费在线播放| 天天爱天天色天天综合| 精品久久久一区三区四区| 人人妻人人澡人人爽人人精品99 | 岛国av资源在线观看| 久久久久高潮白浆久久| 五月婷婷六月丁香手机| 日韩美在线观看视频黄| 91色婷婷视频在线观看| 成人免费av色资源日日| 日韩有码中文字幕视频| 亚洲欧美国产福利一区| 亚洲欧美国产福利一区| 欧美一二三区高清视频| 日韩一区二区三区三级| 欧美人妻中文在线字幕| 国产精品久久久久久久密桃| 男人的天堂网站免费观看| 日本香蕉一区二区三区| 韩国大尺度在线观看视频| 色六月婷婷亚洲婷婷六月| 日本新视频一区二区三区| 激情视频免费在线观看| 日本老熟女一区二区三区| 国产肉丝长腿在线观看| 国产欧美日韩综合一区| 黄色激情小说婷婷六月天| 外国美女激情午夜在线| 麻豆国产精品情侣视频| 一本久久综合激情不卡| 久久99久国产精品黄毛| 日韩中文字幕人妻黄色片| 92欧美一区二区三区| 免费午夜在线欧美整片| 中文字幕有码最近熟女| 欧美精品伦理一区二区| 青青草大香蕉伊人视频| 亚洲综合网一区二区三区| 91人妻久久久久久综合| 在线欧美三级一区二区| 视频国产一区二区三区| 中文字幕在线亚洲二区| 好大好爽好硬日本视频| 日韩一级特黄大片特爽| 69人妻人人澡人人爽久久| 69人妻人人澡人人爽久久| 国产高清视频一区二区乱| 青青草伦理视频在线播放| 久久精品亚洲精品五月天| 九热精品视频在线播放| 一区二区三区激情在线观看| 岛国尤物视频在线观看| 精品呦呦视频在线观看| 国产极品美女视频福利| 日韩午夜激情福利免费| 丝袜美腿一区三区五区| 国产论理视频在线观看| 制服在线一区二区三区| 婷婷婷婷一区二区三区| 午夜视频在线一区二区三区 | 色悠悠综合在线资源网站| 中文字幕在线观看成人免费| 国产精品女人在线观看| 最新看黄色中文字幕网站| 亚洲一区二区区在线观看| 久久天天操天天日天天| 夜夜躁日日躁狠狠久久| 亚洲成人中文字幕高清乱码| 亚洲一区二区三区四区av在线| 亚洲av综合色区一区二区偷拍| 亚洲天堂网av在线播放| 黄色片在线观看一区二区| 成人蜜桃在线观看视频| 性感国产午夜高潮一级片| 日韩伦理一区二区在线| 欧美日韩免费国产在线观看| 成人性生活免费在线视频| 日韩欧美国产一区二区三| 中文字幕乱码熟女第一区| 禁18网站在线免费观看| 欧美精品一区二区在线看| 亚洲成人一区二区免费| 欧美一区二区三区喷汁尤物| 欧美精品福利综合视频| 国产综合在线不卡九色| 尤物美女视频在线观看| 国产亚洲av成人噜噜噜| 69精品久久久久久久| 九一精品人妻一区二区三区| 国产人妻麻豆一区二区| 精品人妻蜜桃视频在线| 十八禁黄无遮挡在线观看| 中文字幕在线免费一区| 免费成人深夜蜜桃视频| 欧美日韩免费国产在线观看| 欧美日韩一区在线免费| 香蕉精品在线一区二区三区| 国产精品久久久久吹潮| 日韩久久人妻一区二区三区| 欧美情欲片一区二区三区| 日本视频一区二区黄色的| 日本人妻与老头中文字幕| 欧美在线综合一区二区| 免费看日韩一级片黄色| 中文字幕av一二三四区| 伊人久久久婷婷色二区| 中文字幕在线免费一区| 美腿国产亚洲欧美一区| 婷婷午夜精品一区二区| 亚洲综合国产成人丁香五| 亚洲欧美三级久久久久| 国产无遮挡猛进猛出免费| 亚洲av少妇一区二区| 美女后入式一区二区三区| 国产乱码一区二区三区三州| 人人妻人人澡人人精品| 日韩欧美一区二区人人爽| 免费观看女人裸体视频| 亚洲二区在线播放视频| 亚洲欧洲国产日韩av| 亚洲视频在线播放网址| 久草免费手机在线视频| 精品国产av色一区二| 不卡的av在线观看网站| 成人午夜大香蕉人妻少妇| 青青青操国产在线视频| 人人妻人人澡人人爽久| 天美传媒天天干天天操| 欧美日韩高清国产精品| 在线中文字幕亚洲一区| 国产激情片一区二区三区| 欧美激情视频一区在线| 精品中文字幕久久久久久| 亚洲国产天堂av网站| 国产又粗又长又爽又猛| 中文字幕久精品视频在线| 欧美成人一区二区在线| 欧美日韩一级作a一区二区| 日本福利片国产午夜久久| 欧美日韩色精品人妻在线视频| 韩国大尺度在线观看视频| 成人精品小视频在线观看| 一区二区三区丝袜制服| 日韩欧美美女福利视频| 美女被插一区二区三区| 成人性生活免费在线视频| 日韩有码中文字幕欧美| 日本久久国产精品视频| 人人妻人人澡人人爽的公开视频| 青青草这里只有精品久久| 日本二区四区不卡视频| 久久久精品亚洲国产av| 色综合天天综合天天做| 亚洲人妻免费视频二区| 日本不卡一二区不久精品免费| 国产又长又粗又爽的视频| 日韩一本一区二区三区| 欧美真人啪啪啪动态图| 免费看国产日韩欧美黄片| 大香蕉一区二区三区四区| 天天爽天天狠久久综合| 亚洲二区视频在线播放| 日本在线东京热在线观看| 精品中文字幕久久久久久| 日韩中出视频在线观看| 亚洲小视频在线观看视频| 国产精品久久久久不卡| 日韩av激情在线观看| 精品男女激情视频久久| 中文一区二区三区欧美| 婷婷亚洲国产成人精品| 中文字幕在线亚洲二区| 老熟女伦一区二区三区老熟| 亚洲网中文字幕久久久| 国产黑丝袜在线观看视频| 在线欧美一区二区三区| 中文字幕视频在线播放| 卡通动漫综合一区二区| 日本美女丝袜视频网站| 精品人妻们的在线视频| 欧美在线视频一区二区三区| 蜜桃视频免费观看高清| 欧美激情一区二区三区牲牛牛| 成人性生活免费在线视频| 国产午夜激情视频在线看| 精品中文字幕久久久久久| 欧美中文字幕精品免费| 天码人妻久久一区区三区免费人妻| 激情视频在线观看视频| 亚洲中文字幕乱码精品区| 征服丰满的大屁股熟妇| 国产精品女人免费视频| 麻豆回家视频区二区三| 十八禁黄无遮挡在线观看| 操你啦青青操在线视频| 91福利一区二区三区| 亚洲国产精品色一区二区| 在线观看国产美女网站| 中文字幕中日韩欧美一区| 欧美成人午夜在线视频| 国产一区二区不卡老阿姨| 成人午夜做爰高潮片免费| 天天干天天干天天干天天色| 国产精品伦理久久老熟女| 日韩一本一区二区三区| 尤物国产一区二区三区| 成人免费av色资源日日| 亚洲狠狠狠一区二区三区| 欧美一区二区不卡网站| 国产熟女高潮一区二区| 胖妇一级视频一级黄色| 亚洲美女在线国产精品| 热精品韩国毛久久久久久| 成人欧美午夜高清大片| 污污污视频在线免费观看| 里崎爱佳av中文字幕| 美女在线免费观看国产| 精品人妻av区二区三区| 丁香婷婷色综合激情五月| 一区二区在线观看国产| 一区二区三区综合视频| 午夜在线播放免费人成年| 中文字幕在线观看青青草| 欧美日本亚洲在线观看| 欧美午夜综合另类午夜| 无吗人妻一区二区三区在线| 9i大香蕉一区二区三区| 成人在线观看亚洲天堂| 欧美日韩人妻老妇视频| 免费在线视频欧美激情| 中文字幕日韩精品黄页| 青青草久久这里只有精品| 九一一区二区三区四区五区| 色偷偷亚洲一区二区三区| 日韩精品在线播放第三页| 中文字幕久精品视频在线| 免费av中文字幕在线| 91成人国产短视频在线| 国产精品三级在线播放| 尤物视频免费观看网站| 激情欧美一区二区三区| 久久99久国产精品黄毛| 欧美激情久久五月天色| 色综合天天综合网免费| 大陆亚洲国产欧美一区| 亚洲欧美精品成人久久曰| 久久久亚洲熟妇熟女视频| 日韩美女黄色高清视频| 欧美成人国产亚洲自拍| 亚洲成人午夜福利综合网| 97人妻人人揉人人澡人人爽国产 | 亚洲欧美另类久久久精品| 熟女av俱乐部久久久久| 在线观看亚洲区一区二区| 国产又粗又长又黄视频| 色婷婷在线视频免费观看| 精品国产美女网站免费| 北条麻妃在线中文字幕| 美女一抽一插啪啪试看| 免费精品日韩欧美大片| 国产精品内射婷婷一级二| 国产一区二区三区裙底在线| 欧美一区二区三区啪啪啪| 中文字幕精品日韩综合| 日韩美女美女三级视频| 亚洲第一页精品在线播放| 婷婷亚洲国产成人精品| 老熟妇仑乱换频一区二区| 欧美视频在线观看一区二| 五月综合婷婷久久综合网| 欧美日韩激情区一区二区| 91成人国产短视频在线| 欧美日韩在线一区免费| 亚洲欧美精品成人久久曰| 在线观看亚洲区一区二区| 不卡一区二区三在线视频| 亚洲天堂第一页在线观看| 亚洲综合国产成人丁香五| 一区二区三区综合在线视频| 一区二区三区伦理视频| 美女被插一区二区三区| 成人av一区二区无字幕| 五月天丁香激情久久一区| 有码人妻中文字幕在线| 日韩美女黄色高清视频| 人妻少妇久久中文字幕| 日日狠狠久久偷偷综合色| 亚洲一区二区欧美精选| 中文字幕人妻丰满熟女| 在线综合亚洲欧美专区| 国产日韩欧美在线免费观看| 极品人妻一区中文字幕| 久久永久免费人妻精品| 99久久精品国产亚洲| 久久久久精品久久九九| 午夜视频在线免费观看视频| 日韩中文字幕在线手机版| 日日久久一区二区三区| 国产成人丰满在线视频| 亚洲视频网站在线播放| 青青操亚洲天堂视频在线| 欧美亚洲制服一区二区| 大尺度激情视频日韩网站| 国产精品久久综合激情| 亚洲香蕉av在线免费| 日韩美女hd高清视频| 欧美黄色免费在线播放| 少妇高潮一区二区三区四| 中文一区二区高清不卡专区| 天堂网中文字幕人妻熟女| 一区二区三区亚洲情色| 亚洲中中文字幕在线观看| 中文字幕有码综合色亚洲| 亚洲精品视频人妻系列| 伊人激情综合中文字幕| 污污污视频在线免费观看| 日韩高清网站在线观看| 国产亚洲精品美女久久| 日韩美女美女三级视频| 色综合久久天天综合网| 日韩美女在线视频一区| 欧美中文字幕精品免费| 成人公开成人免费视频| 欧美一区二区三在线播放| 蜜桃成人午夜免费视频| 亚洲二区视频在线播放| 日韩欧美一卡二卡在线| 伊人久久一区二区三区导航| 97操碰视频在线观看| 一道本久久综合久久鬼色| 久草视频免费手机在线| 在线观看视频二区三区| 日本成年人一区二区三区视频| 欧美人妻熟妇欧美视频| 激情视频免费在线观看| 亚洲精欧美一区二区精品| 亚洲中文字幕乱码精品区| 乱码丰满人妻一二三四区| 蜜桃成人午夜免费视频| 国产精品女人久久久久| 青青草免费手机在线视频| 精品国产一区二区三区在线| 免费在线观看尤物视频| 欧美一区两区三区久久| 欧美性女人一区二区三区| 国产黑丝袜在线观看视频| 叼嗨视频在线看网站免费| 国产日韩欧美在线免费观看| 激情视频免费在线观看| 欧美午夜在线免费观看| 在线观看亚洲区一区二区| 国产夫妻性生活自拍视频| 丁香色婷婷国产精品视频| 成人涩涩涩色在线观看视频| 免费在线观看污视频网址| 国产又粗又深又猛又爽| 伊人伊成久久综合波野多| 一区二区精品三区亚洲人妻| 精品尤物视频在线观看| 免费观看一级片中文字幕| 欧美激情一级欧美精品性| 中文字幕有码最近熟女| 欧美亚洲午夜福利视频| 亚洲日产一区二区三区| 精品人妻少妇一区二区三区| 亚洲欧美色网一区二区| 亚洲欧美另类久久久精品| 最新看黄色中文字幕网站| 禁18网站在线免费观看| 欧美码中文精品中文字幕| 亚洲午夜激情视频福利| 九九热视频在线看看看| 欧美成人国产亚洲自拍| 国产成人综合亚洲绿色| 99国产精品免费人妻| 大屁股熟女一区二区三区| 国产精品一区中文字幕| 国产三级美女在线观看| 国产一区二区三区青青草| 精品视频一区二区三区| 狠狠婷婷久久精品一区二区| 蜜臀av国内精品久久久| 男女视频免费观看国产区| 亚洲人妻免费视频二区| 日韩美女午夜在线视频| 成人午夜大香蕉人妻少妇| 日韩丰满美女在线视频| 国产一区二区欧美日韩在| 极品人妻一区中文字幕| 成人午夜免费观看视频| 日韩久区二区三区天天| 亚洲网中文字幕久久久| 99国产精品免费人妻| 中出一区二区三区四区| 日韩欧美中文字幕系列| 东北大屁股熟女嗷嗷叫| 青草青草久热经典视频| 里崎爱佳av中文字幕| 亚洲欧洲中文日韩av| 久久激情深爱网av蜜臀| 激情视频在线观看视频| 中文字幕专区一区二区| 中文字幕人妻丝袜乱一区| 青青草国产精品视频在线| 亚洲美女精品视频久久久| 亚洲一区二区在线偷拍| 二区三区不卡视频在线| 日韩中文一区二区三区精品| 欧美熟女丝袜一区二区| 亚洲国产精品欧美一级| 久久亚洲中文字幕精品| 欧美日韩高清国产精品| 母乳中出一区二区三区| 国产欧美综合一区二区| 国产精品三级在线播放| 欧美三级成人一区二区| 黄色美女av蜜桃网站| 国产伦理精品久久久久| 制服丝袜美腿一区二区三区| 久久国产精品国产精品宅男| 日韩美女在线免费视频国| 国产又色又粗又粗的视频| 香蕉精品在线一区二区三区| 中文字幕欧美在线人妻| 男女爱爱视频免费国产| 免费午夜在线欧美整片| 中日韩中文字幕一区二| 大波美女一区二区三区| 国产一区二区三区在线下载| 日本特黄特黄大片免费| 国产精品四区免费观看| 97操碰视频在线观看| 婷婷午夜精品一区二区| 日韩欧美在线观看免费| 久草视频免费手机在线| 久久99久国产精品黄毛| 丝袜熟女高潮一区二区| 欧美一区二区三区啪啪啪| 日韩精品视频在线观看完整版| 午夜免费成人激情视频| 韩国理论一区二区三区| 亚洲伦理精品一区二区三区| 欧美人妻中文在线字幕| 午夜美女福利视频久久| 亚洲成人精品在线播放| 亚洲综合色在线观看专区| 黄色片在线观看一区二区| 99欧美成人一区二区| 亚洲综合色在线观看专区| 青青草av在线免费观看| 亚洲国产天堂av网站| 一区二区三区18久久久| 高清视频中文字幕亚洲| 一区二区三区日韩高清| 天天做天天爱天天爽天天舔| 最新中文字幕人妻伊人网| 少妇高潮一区二区三区四| 99热在线观看国产精品| 国产欧美日韩综合一区| 国产精品一区二区在线| 青青青青草国产精品视频| 人妻禁断一区二区三区| 亚洲成人午夜福利综合网| 久久大香蕉亚洲男人天堂| 久久精品国产亚洲av蜜色| 欧美激情久久五月天色| 后进丰满少妇人妻大屁股| 欧美激情综合在线视频| 精品国产网站免费观看| 午夜少妇饥渴难耐一区| 激情五月婷婷一区二区| 熟女视频一区二区三区| 国产高清视频一区二区乱| 一本大道大香蕉一区二区| 一本色道久久av蜜桃臀 | 亚洲欧美色视频在线观看| 亚洲欧美日韩欧美日韩| 欧美顶级一区二区三区| 91一区二区三区在线| 欧美一区二区三区一级| 久久综合久中文字幕青草| 日本熟妇孕妇孕交视频| 日韩视频免费中文字幕| 岛国尤物视频在线观看| 色婷婷成人免费视频网站| 国产午夜精品久久久久婷| 光棍午夜福利在线观看| 人人妻人人澡人人精品| 国内外激情免费视频网| 亚洲熟女中文字幕中出| 最新中文字幕人妻伊人网| 男女激情视频网站免费| 欧美国产日韩男人的天堂| 99久久久久久国产精品| 亚洲午夜激情视频福利| 亚洲中文字幕一区三区| 伊人亚洲欧美日韩加勒比| 蜜桃臀av一区二区三区| 久久精品亚洲精品五月天| 天美传媒天天干天天操| 天天综合久久天天综合| 精品一区二区三区人妻系列| 尤物直播视频在线观看| 亚洲国产天堂久久久久久| 久久精品国产成人av| 精品国产网站免费观看| 特殊按摩亚洲一区二区| 熟女人妻一区二区在线| 福利一区二区丝袜人妻| 男人的天堂在线亚洲av| 有码人妻中文字幕在线| 午夜免费一区二区视频| 日韩丝袜美腿视频网站| 欧美人妻中文在线字幕| 欧美丰满老熟妇bbb| 日本在线东京热在线观看| 欧美一区二区三区综合| 精品性高潮久久久久久久| 亚洲第一黄色日韩欧美| 黄色片在线观看一区二区| 色成熟丰满人妻综合网站| 亚洲国产精品欧美一级| 亚洲成人一区二区免费| 人妻自拍视频一区二区三区| 一区二区免费不卡视频| 日韩人妻在线视频播放| 欧美精品伦理一区二区| 亚洲黄色片一区二区三区| 蜜桃视频免费观看视频| 免费看国产日韩欧美黄片| 日本人妻熟女中文字幕| 蜜桃成人午夜免费视频| 蜜桃视频免费观看视频| 久久激情欧洲亚洲中文| 国产又粗又深又猛又爽| 成人公开成人免费视频| 亚洲人妻巨乳中文字幕| 男女激情视频网站免费| 日韩av一区二区国产| 欧美中文字幕精品免费| 一区二区三区欧美在线免费| 国产成人午夜在线观看| 青青草久久这里只有精品| 人妻人久久精品中文字幕| 欧美福利视频在线播放| 免费大片日本一级特黄| 中文字幕日韩欧美国产| 色综合久久天天综合网| 日韩一级特黄大片亚洲| 日韩精品人妻久久久久久| 欧美寂寞少妇在线观看| 国产精品日韩av在线| 无吗人妻一区二区三区在线| 伊人久久大香线蕉成人| 大香蕉免费av在线观看| 国产精品久久久久久久密桃| 国内精品伊人久久久久网| 99精品国产综合久久久蜜臀| 大尺度激情视频日韩网站| 亚洲一区二区国产精品久久| 成人蜜桃在线观看视频| 亚洲一区二区三区综合网| 尤物视频精品在线观看| 亚洲国产天堂av网站| 男人天堂av一区二区| 免费国产精品黄色一区二区| 国产三区美女在线观看| 一区二区三区制服精品| 97操碰视频在线观看| 欧美一区二区三区二区| 一区二区三区美女黄色| 天天爽天天狠久久综合| 日韩黄色小说免费阅读| 日韩中文精品在线字幕| 欧美人妻中文在线字幕| 日本久久国产精品视频| 大陆亚洲国产欧美一区| 蜜桃精品视频一区二区在线| 日韩欧美精品一区二区免费| 国产又粗又硬又大又爽| 日韩高清乱码中文字幕| 一区二区亚洲精品在线| 欧美一本在线中文字幕| 亚洲天堂网av在线播放| 亚洲美女在线国产精品| 国产精品午夜福利小视频| 国产欧美一区二区三区如水| 欧美在线激情一区二区| 国产三级美女在线观看| 日韩av一级二级中文字幕| 国产成人av一区二在线| 蜜桃一区二区三区在线观看| 美女一抽一插啪啪试看| 国产av日韩一区二区| 色呦呦国产精品区一区二| 十八禁黄无遮挡在线观看| 性感国产午夜高潮一级片| 蜜桃臀av一区二区三区| 亚洲欧美中文日韩视频二区| 国产一级熟女高潮大全| 99re在线免费播放| 亚洲综合国产成人丁香五| 中出一区二区三区四区| 久草精品免费在线观看| 国产高清视频一区二区乱| 青青操免费在线视频观看| 亚洲精品成人资源av| 久久激情视频精品视频| 91精品国产一区二区三区在线| 麻豆特殊视频免费观看| 丰满老熟女二区三区四区| 天天爱天天色天天综合| 一区二区在线观看精品| 日韩久久国产亚洲av| 日韩性生活黄色一级片| 呦呦在线免费观看视频| 久青青视频精品免费观看| 中文字幕日韩紧缚人妻精品一区 | 伊人激情综合中文字幕| 最新国产情侣在线视频| 五月婷婷久久综合激情| 日本精品久久久久久综合网| 蜜臀av国内精品久久久| 午夜精品一二三区在线| 国产精品欧美激情在线观看| 久久亚洲精品国产精品婷婷| 日韩午夜免费三区视频| 中文字幕日韩av资源站| 熟女如虎的丰满熟妇啪啪| 高清一区二区三区四区五区| 一区二区三区制服精品| 日韩区二区三区中文字幕| 美女被插一区二区三区| 免费成人欧美一区二区| 亚洲国产精品一区中文字幕| 亚洲欧洲国产日韩av| 人妻免费视频观看一区二区三区 | 免费在线观看不卡av网| 欧美日韩精品人人妻人人爽| 国产极品美女在线观看| 日韩极品少妇人妻系列| 日韩中文字幕黄色短片| 欧美黑人深夜精品免费| 久久国产热这里只有精品| 欧美午夜一区二区三区四区| 日本特黄免费在线观看| 激情欧美一区二区三区| 亚洲一区二区区在线观看| 禁18网站在线免费观看| 97人干人人插人人看| 亚洲视频网站在线播放| 92欧美一区二区三区| 日韩美女午夜在线视频| 最新看黄色中文字幕网站| 国产中文亚洲熟女日韩| 黄片欧美一区二区在线观看 | 动漫操人视频在线观看| 中文字幕在线观看成人免费| 亚洲中文字幕二区在线| 男女超爽视频免费观看| 国产男女免费视频网站| 欧美极品一区二区三区中| 黄色美女av蜜桃网站| 国产一区二区三区免费观看在线| 五月综合婷婷久久综合网| 97人干人人插人人看| 老熟女伦一区二区三区老熟 | 好看的亚洲中文字幕在线| 亚洲一区二区三区综合网| 69精品久久久久久久| 久久成人成狠狠爱综合网| 一区二区三区蜜桃视频| 在线中文字幕亚洲一区| 亚洲国产精品色一区二区| 国内视频一二三区视频| 欧美激情久久五月天色| 蜜臀av国内精品久久久| 久草精品在线观看免费| 久久久人妻蜜桃可以下载| 欧美丰满老熟妇bbb| 丝袜美腿在线一区二区| 日韩美中文字幕视频在线| 玩弄少妇人妻中文字幕| 欧美日韩人妻老妇视频| 麻豆特殊视频免费观看| 经典三级中文字幕在线播放| 免费在线观看污视频网址| 综合色视频不卡一区二区| 一区二区福利在线视频| 国产乱码一区二区三区三州| 在线综合亚洲欧美专区| 里崎爱佳av中文字幕| 欧美黑人深夜精品免费| 在线观看国产美女网站| 亚洲中出在线视频播放| 在线视频一区二区精品| 激情五月天综合婷婷婷| 国产又粗又深又猛又爽| 美女擦边一区二区三区| 午夜精品久久久久毛片| 久久久久成亚洲国产欧美| 久青青视频精品免费观看| 精品呦呦视频在线观看| 一道本久久综合久久鬼色| 欧美一欧美二欧美三精品| 激情欧美一区二区三区| 国产手机精品自拍小视频| 青青草久久这里只有精品| 伦理视频一区二区三区| 亚洲黄欧美一区二区三区| 欧美黑人巨大精品一区二区| 视频欧美人妻中文在线| 国产av日韩一区二区| 亚洲欧美中文日韩视频二区| 中文精品人妻一区二区三区| 欧美人妻在线视频网站| 久久精品国产毛片在看| 中文字幕日韩精品黄页| 97在线人妻免费的视频| 天天躁狠狠躁日日躁黑人| 十八禁看网站在线观看| 欧美一区二区三区综合| 精品日韩一区二区三区| av黄网页在线观看网站| 国产欧美精品一二三四区| 午夜精品日韩在线播放| 91色婷婷视频在线观看| 日韩中文精品在线字幕| 国产激情男女免费视频| 中文字幕亚洲综合一区| 青青操视频免费播放器| 青青草大香蕉伊人视频| 麻豆一区在线观看视频| 久草精品免费在线观看| 成年在线观看视频网站| 女厕自拍偷拍一区二区| 欧美人妻中文在线字幕| 中文精品人妻一区二区三区| 成人午夜免费观看视频| 精品人妻们的在线视频| 成人一区二区三区视频| 女厕偷拍一区二区三区| 亚洲国产精品一区中文字幕| 国产片在线一区二区三区| 国产精品一区二区高潮| 热久久日韩中文字幕av| 日韩欧美一区二区人人爽| 无吗人妻一区二区三区在线| 国产精品极品美女自在线| 国产精品久久久久久妇女| 色综合天天综合网免费| 欧美日韩激情区一区二区| 尤物网站在线观看视频| 一区二区三区伦理视频| 婷婷精品视频免费观看| 午夜在线播放免费人成年| 午夜精品区一区二区三| 欧美午夜一区二区三区四区| 成人涩涩涩色在线观看视频| 久草免费手机在线视频| 欧美人与性动交欧美精品| 国产丝袜区一区二区三| 亚洲国产精品色一区二区| 成人涩涩小片视频日本| 99久久精品国产亚洲| 视频一区二区三区在线| 天天综合久久天天综合| 麻豆成人在线免费观看视频| 日韩高清网站在线观看| 中文字幕第一区免费在线| 爽又猛又粗国产免费国产| 亚洲伊人久久综合蜜桃| 丰满老妇一区二区三区| 外国av在线免费观看| 欧美日韩高清国产精品| 国产午夜高潮熟女精品| 国产无遮挡猛进猛出免费| 午夜精品区一区二区三| 欧美精品一区二区在线看| 午夜视频在线免费观看视频| 亚洲欧美日韩久久亚洲区| 特黄特黄欧美大片人操人| 亚洲欧美精品一区在线看| 青青草免费手机在线视频| 日韩大屁股一区二区三区| 美腿国产亚洲欧美一区| 色综合久久天天综合网| 日韩黄色一级生活大片| 成人在线观看亚洲天堂| 男女视频免费观看国产区| 国产精品久久久久久久密桃| 久久这里只有精品毛片| 99热最新成人国产精品| 亚洲国产精品99久久久| 日韩高清乱码中文字幕| 日韩在线中文字幕专区| 97人妻超碰中文字幕| 中日韩中文字幕一区二| 国产男男做爰免费视频| 国产乱码久久久久久一区二| 日韩美女在线视频一区| 国产精品毛片av一区二区| 欧美日韩精品一区二区视频永久免| 亚洲成人一区二区免费| 又大又黄又粗的国产视频| 夜夜躁狠狠躁日日躁一区 | 国产精品天天干夜夜嗨| 亚洲国产一区二区精品专区| 91人妻久久久久久综合| 欧美激情视频在线一区| 欧美福利视频在线播放| 国产一区二区在线蜜臀| 欧美日本亚洲在线观看| 亚洲欧美一区二区免费| 日本二区四区不卡视频| 日本精品一二区不卡视频| 十八禁黄色免费污污污亚洲| 欧亚日韩精品中文字幕| 国产精品女人在线观看| 日韩中文字幕在线手机版| 伊人伊成久久综合波野多| 亚洲免费在线视频播放| 美女后入式一区二区三区| 亚洲视频在线播放人成| 中文字幕日韩精品黄页| 加勒比人妻av中文字幕| 男女免费在线观看视频| 外国美女激情午夜在线| 欧美激情成人在线免费观看| 蜜桃视频在线播放网站| 欧美亚洲素人制服精品| 在线中文字幕 你懂的| 人人妻人人澡人人爽久| 色狠狠av五综合久久久| 黄页网址在线免费观看| 国产三区美女在线观看| 国产人妻麻豆一区二区| 国产综合在线不卡九色| 日韩精品视频在线观看完整版| 青青草免费手机在线视频| 日韩精品中文字幕av在线| 天天做天天爱天天爽天天舔| 亚洲天堂视频在线播放| 日韩美女精品一在线观看| 久久综合偷偷噜噜噜色| 好紧好爽好舒服的视频| 亚洲第一页精品在线播放| 成人在色线视频在线观看| 日韩美女在线免费视频国| 大香蕉大香蕉在线视频| 日韩欧美中文字幕系列| 中文字幕日韩紧缚人妻精品一区| 中文字幕二区三区亚洲| 蜜桃视频在线播放网站 | 麻豆一区在线观看视频| 成人涩涩小片视频日本| 久久亚洲综合精品人妻| 中文字幕好色爽视频综合网| 一区二区亚洲中文字幕| 国产视频精品视频免费| 91人妻久久久久久综合| 久久这里只有精品官网| 日韩美中文字幕视频在线| 成人性生活免费在线视频| 一区二区三区激情在线观看| 国产一区二区三区黄色网| 在线一区三区精品视频| 最新日韩伦理片第一页| 中文字幕久久久人妻人区| 久久久国产精品一二三区| 日韩欧美在线观看免费| 桃色午夜一区二区三区| 亚洲中文字幕乱码精品区| 大尺度激情视频日韩网站| 日韩欧美一卡二卡在线| 激情视频在线观看视频| 久久中文字幕人妻淑女| 亚洲日产一区二区三区| 蜜桃成人午夜免费视频| 在线免费播放中文字幕| 国产三区美女在线观看| 国产一区二区不卡老阿姨| 久久久大屁股巴西精品| 天码人妻久久一区区三区免费人妻| 伦理在线观看国产第一| 欧美一区二区三区久久综| 亚洲天堂网av在线播放| 国产精品99久久精品| 日韩区二区三区中文字幕| 国产精品嫩模高潮呻吟| 亚洲成人中文字幕高清乱码| 日本亚洲三级中文字幕| 日韩精品在线观看不视频| 一区二区三区亚洲情色| 婷婷婷婷一区二区三区| 午夜国产成人在线观看| 尤物直播视频在线观看| 日韩中出视频在线观看| 日韩精品视频在线观看完整版| 你行你操综合丝袜美腿| 国产床上精品免费大片| 青青草免费手机在线视频| 中文字幕免费视频播放| 欧美人妻在线视频网站| 男女视频在线观看午夜| 亚洲av日韩av自拍偷拍| 青青草小视频在线播放| 亚洲欧美国产福利一区| 婷婷基地五月激情五月| 私人尤物视频在线观看| 色婷婷综合久久久久桃花| 精品乱码无人区一区二区| 国产又粗又长又爽又猛| 久草精品免费在线观看| 欧美激情综合久久久久| 最新中文字幕人妻伊人网| 播放日本一级特黄大片| 亚洲午夜无av毛片久久| 亚洲一区二区三区骚货| 尤物视频日韩亚洲视频| 日韩一级特黄大片特爽| 老熟妇仑乱换频一区二区| 久久综合偷偷噜噜噜色| 久久精品国产成人av| 亚洲综合色在线观看专区| 精品免费一区二区三区在| 91孕妇精品一区二区| 欧美激情一级欧美精品性| 欧洲成人一区二区精视频| 国产精品女人久久久久| 欧美日韩精品人妻一区二区| 一本色道久久av蜜桃臀| 青青草更新人妻在线视频| 欧美日韩一区国产二区| 久久青草综合激情五月天| 成人免费播放一区二区三区| 青青草伦理视频在线播放| 人妻一区二区三区视频| 成人涩涩小片视频日本| 97超碰人妻中文字幕| 中文字幕在线观看青青草| 蜜桃成人午夜免费视频| 超碰91成人在线观看| 婷婷视频免费在线播放| 亚洲欧美精品成人久久曰| 中文字幕有码最近熟女| 男女在线观看一区视频| 亚洲国产激情福利专区| 在线免费观看日韩欧美| 国产伦一区二区三区在线| 本庄优花人妻中文丝袜| 久久大香蕉亚洲男人天堂| 亚洲成人一区二区免费| 国产精品美女制服诱惑| 欧美顶级一区二区三区| 国产伦视频一区二区三区| 亚洲另类少妇欧美日韩精| 婷婷亚洲国产成人精品| 丁香色婷婷国产精品视频| 亚洲欧美另类久久久精品| 日日久久一区二区三区| 最近日本中文字幕免费| 播放国产免费一级黄片| 99久久成人免费视频| 国产精品视频美女网站| 欧美国产午夜精品一区二区三区| 国产老太婆精品久久久久| 国产一区二区亚洲欧美| 国产中文字幕在线最新| 欧美人与性动交欧美精品| 国内自拍黄片在线观影| 日本特黄一级在线观看| 国产午夜精品久久久久婷| 日本成年人一区二区三区视频| 国产乱码一区二区三区三州| 99久久成人免费视频| 国产农村高清一区二区| 在线观看的网站日韩精品| 国产一区二区三区尤物| 亚洲美女视频永久网址| 日韩精品中文字幕国产av| 大屁股熟女一区二区三区| 中国少妇与黑人一二三区| 婷婷亚洲国产成人精品| 国产极品美女在线观看| 91一区二区三区在线| 日韩黄色小说免费阅读| 国产精品久久久久人妻| 日本一二三区视频在线| 免费黄色片一区二区三区| 青青草免费手机在线视频| 亚洲精欧美一区二区精品| 日韩美女午夜免费视频| 日韩美女三区免费视频| 亚洲精品国产美女久久久| 亚洲色图自拍在线观看| 日本亚洲三级中文字幕| 激情五月婷婷一区二区| 91色乱码一区二区三区| 精品尤物视频在线观看| 热久久日韩中文字幕av| 欧美人体一区二区三区| 亚洲中文字幕高清视频| 操她视频在线观看网址| 成人午夜激情蜜桃999| 国产一级熟女高潮大全| 日韩一区二区三区精品区| 男人天堂色男人在线视频| 精品国产网站免费观看| 岛国av资源在线观看| 99青草视频在线观看| 免费成人欧美一区二区| 欧美一区二区在线高清| 人妻日韩丰满一区二区| 特黄特黄欧美大片人操人| 我要看日韩欧美中文字幕| 午夜福利视频免费黄| 亚洲精品久久久激情综合| 夫上司人妻一区二区三区| 欧美激情一级欧美精品性| 岛国av资源在线观看| 午夜精品一区福利久久| 亚洲日产一区二区三区| 日韩一级黄片高清视频| 亚洲美女视频永久网址| 美女三级国产在线观看| 一区二区免费不卡视频| 亚洲国产精品一区中文字幕| 一区二区三区女大学生| 美女少妇午夜爽爽视频| 国产成人av一区二在线| 久久99久国产精品黄毛| 精品国产成人av在线看| 久久久久成亚洲国产欧美| 国产又粗又长又大又硬视频| 青青草国产精品视频在线| 五月天中文字幕一区二区| 日韩美女黄色高清视频| 日韩一区二区三区三级| 日韩中文字幕在线手机版| 国产精品视频观看大全| 婷婷亚洲国产成人精品| 日韩视频免费中文字幕| 92欧美一区二区三区| 成人午夜大香蕉人妻少妇| 爽又猛又粗国产免费国产| 私人尤物视频在线观看| 一本久久综合激情不卡| 夜夜夜亚洲一区二区三区| 国产一区二区三区免费观看在线| 啊好紧好爽好舒服视频| 亚洲人妻久久久中文字幕 | 久久国产人妻一区二区| 精品中文字幕久久久久久| 欧洲一区二区三区黄色| 在线免费播放中文字幕| 刘玥国产精品一区二区三区| 亚洲熟女中文字幕中出| 熟女乱一区二区三区在线| 91色婷婷视频在线观看| 国产一区二区一级黄片| 中文字幕日韩紧缚人妻精品一区| 一区二区三区资源在线| 99久久精品毛片免费| 人妻偷乱视一区二区三区| 中文字幕在线观看成人免费| 开心激情婷婷激情五月天| 亚洲精品自拍偷拍av| 精品呦呦视频在线观看| 丰满老妇一区二区三区| 一区二区三区女大学生| 日韩av中文字幕三区| 99国产精品免费人妻| 你行你操综合丝袜美腿| 性激烈欧美日韩中文字幕| 一区二区亚洲中文字幕| 99伊人中文字幕一区综合在线| 日日狠狠久久偷偷综合色| 国产农村高清一区二区| 综合色视频不卡一区二区| 日韩av一区二区国产| 久久久久精品国产亚洲| 中文字幕av中文不卡| 欧美码中文精品中文字幕| 在线日韩欧美一区二区三区| 欧美一区二区在线高清| 青青草更新人妻在线视频| 国产亚洲精品美女久久| 胖妇一级视频一级黄色| 久久久久亚洲av麻豆精品| 午夜久久精品福利视频| 亚洲国产精品熟女久久久| 美腿国产亚洲欧美一区| 久久永久免费人妻精品| 国产精品亚洲综合色区| 亚洲一区二区三区四区av在线 | 久久综合丁香激情久久| 欧美在线不卡激情二区| 日韩欧美中文字幕首页| 亚洲女同恋中文一区二区| 国内自拍黄片在线观影| 欧美黄色免费在线播放| 在线亚洲欧美日韩另类| 欧美激情一区二区三区牲牛牛| 青青操免费在线视频观看| 99亚洲综合色在线观看| 午夜在线精品偷拍一区二| 啪啪啪免费看亚洲一区| 国产一区二区一级黄片| 天天爱天天色天天综合| 久久久亚洲熟妇熟女毛片| 欧美一二三区高清视频| 97视频在线观看青青草| 好看的日本中文字幕视频| 成人国产一区二区在线看| 欧美日韩在线看第一页| 欧美激情啪啪视频一区二区三区| 欧洲成人一区二区精视频| 99欧美成人一区二区| 欧美日韩乱一区二区三区| 日本福利片国产午夜久久| 蜜桃精品视频一区二区在线| 中文字幕日韩紧缚人妻精品一区| 免费精品日韩欧美大片|